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We show that under well-defined conditions the Hohenberg-Kohn theorem (HKT) that provides the
foundation of ground-state density functional theory (DFT) can be extended to the lowest-energy
resonance of unbound electronic systems. The extended version of the HKT provides an adequate
framework to carry out DFT calculations of negative electron affinities.
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Most ground-state properties of electronic systems can
now be calculated from first principles via density-
functional theory (DFT) [1]. When the ground state of an
N-electron system is not bound, strict application of DFT
with the exact exchange-correlation functional should
yield results that are identical to those of the (N �M)-
electron system, where N �M is the maximum number of
electrons that the external potential can bind. But in such
cases, rather than the absolute ground state one is often
interested in resonant states (long-lived metastable states),
even if not eigenstates of the Hamiltonian. It is the lowest-
energy resonance (LER) that plays the role of the ground
state in the sense that, during its lifetime, it best represents
the physical state of the N-electron system. In fact, the
LER is the localized ‘‘ground state’’ of the non-Hermitian
operator that is obtained by complex scaling the coordi-
nates of the original N-electron Hamiltonian by an appro-
priate phase factor (for complex-scaling techniques, see
Refs. [2–4]). The energy ELER and inverse lifetime �LER of
the LER are given, respectively, by the real and imaginary
parts of its complex eigenvalue ELER. One can associate a
complex density n��r� to it, and intuition suggests that the
Hohenberg-Kohn theorem (HKT) that provides the foun-
dation of DFT [5] can be extended along the following
lines: the complex density n��r� associated with the LER
uniquely determines the �-scaled external potential, and all
properties of the LER (in particular ELER and �LER) are
therefore functionals of n��r�. Such extension is desirable
to estimate from n� the relative stability of unbound nega-
tive ions, or the ionization probabilities of atoms and
molecules in the presence of applied fields. History teaches
us to be watchful, however, since the HKT has proven
elusive when attempting to depart from the ground state.
It has been shown to hold for the lowest-energy state of any
given symmetry [6,7], with the resulting functionals de-
pending on the particular quantum numbers corresponding
to each symmetry. More importantly, the lack of an HKT
for excited states was recently demonstrated [8]; i.e.,
excited-state densities, in general, do not uniquely deter-

mine the external potential. We are faced here with a rather
different problem, since the LER is an eigenstate of the
complex-scaled Hamiltonian rather than the unscaled one.
The simplest example is the 3P resonance of H� (the
lowest-energy state for that symmetry [9]), for which
ground-state DFT would predict its energy, had nature
not made it unbound.

In spite of the fact that the HKT holds only for the
ground state [10], attempts have been carried out to use
time-independent DFT for the calculation of excited en-
ergy levels [11], and even very recently for resonances
that can be regarded as excited states where the widths
(inverse lifetimes) are not equal to zero, but still small
[12]. Whereas our aim is similar in spirit to that of
Ref. [12], we focus our attention on the LER of unbound
systems.

Complex-coordinate scaling is a well-developed tech-
nique to characterize resonant states: upon multiplying all
electron coordinates of the Hamiltonian by a phase factor
ei�, the complex-scaled Hamiltonian Ĥ� has right and left
eigenvectors, denoted by j��i and h���j, respectively, at:
(a) bound states of the original (� � 0, Hermitian)
Hamiltonian, corresponding to the same energy eigenval-
ues; (b) continuum states of the original Hamiltonian; the
respective eigenvalues are rotated into the lower-half of the
complex energy plane by an angle of 2�; and (c) resonant
states, with �-independent eigenvalues. The complex-
scaled resonance eigenfunctions are exponentially local-
ized in the interaction region, whereas the continuum
eigenfunctions almost vanish there [13]. We emphasize
that the variational theorem for non-Hermitian quantum
mechanics has been developed only for resonances and not
for the continua [14].

The original Hohenberg-Kohn proof [5] is based on the
minimum principle for the ground-state energy and on
the fact that the N-electron density operator n̂�r� �PN
i�1 ��r� r̂i� couples linearly with the external potential

vext�r�, i.e., that one can always write a static N-electron
Hamiltonian as
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 Ĥ � T̂ � V̂ee �
Z
drn̂�r�vext�r�; (1)

where T̂ is the N-electron kinetic-energy operator, and V̂ee
is the electron-electron repulsion. This linear coupling is of
course maintained upon scaling (z � rei�),

 Ĥ � � T̂� � V̂ee;� �
Z
dzn̂�z�vext�z�; (2)

where T̂� � e�2i�T̂, V̂ee;� � e�i�V̂ee for Coulomb inter-
actions, and n̂�z� � exp��i3��n̂�r� [15]; but the minimum
principle no longer holds: the complex variational princi-
ple [14] guarantees stationarity at all the resonant eigen-
functions of Ĥ�, but not minimality at any of them. The
main result of this Letter is the realization that minimality
at the LER is generally true for unbound systems, and, as a
consequence, a practical analog of the HKT can be
established.

Minimality at the LER.—Start with a simple case to
motivate our statements. Consider a single electron moving
in the one-dimensional potential

 vext�x� �
�

1
2x

2 � �
�
e��x

2
; x > 0; (3)

(vext ! 1 for x � 0), and choose � and � so that vext has
no bound states. Figure 1 shows this potential, along with
the complex energies and magnitude squared of five reso-
nance wave functions obtained via complex scaling for an
appropriate choice of � and �. The LER energy for such
choice is ELER � Reh���LERjĤ�j�

�
LERi � 0:62 a:u:. We ask

whether the expectation value of Ĥ� for an arbitrary trial
square-integrable function �trial can have a real part that is

less than ELER. Choose for example �trial�x� � Cxe��x
2

and set C so that ��
trial � �trial�xei�� is properly normal-

ized. We show in Fig. 2 the energy Etrial �

Reh���trialjĤ�j�
�
triali as a function of � and note that it is

above ELER for all �. According to the bounds derived by
Davidson et al. [16] for resonance positions and widths,
there is no reason to expect this to be always the case, since
the most one can say about the exact complex eigenvalue at
a resonance is that it lies within a circle of radius deter-
mined by the complex variance associated with the trial
wave function. But the LER of unbound systems is a
special resonance since no �-independent eigenvalues of
Ĥ� exist below it. A local minimum at the LER must also
be a global one. Nothing guarantees, however, that the
energy at the LER is a local minimum, rather than a local
maximum, or saddle point.

We now argue that the result observed in Fig. 2 for our
test example is in fact usually the case, also forN electrons,
and discuss the plausibility of this statement for a special
subset of trial functions: those that are localized in the
region where the resonance wave functions, and, in par-
ticular, the LER, have a high amplitude (see our comment
above on the localization of the resonances in the interac-
tion region, whereas the rotating continuum states are not
localized). To be specific, restrict the discussion to trial
functions that satisfy

 jh���LERj�trialij
2 > 1

2: (4)

The same condition was employed before in Ref. [16] to
derive upper and lower bounds for resonances. In such
cases, �trial may be expanded in terms of only resonance
states. There are no bound states to populate, and the
overlap with �-scaled continuum eigenstates is negligible.
(On the fact that the resonances serve as an almost com-
plete set, see Ref. [17]). Then, to a good approximation,

 Etrial�ELER

�
1�

X
k�LER

h���k j�
�
triali

2�Ek=ELER�1�
�
; (5)

where the ��
k are resonance eigenfunctions of Ĥ� with

complex eigenvalues Ek � Ek �
i
2 �k. We conclude that if

 X
k�LER

�
Reh���k j�

�
triali

2�Ek � ELER�

�
1

2
Imh���k j�

�
triali

2��k � �LER�

�
> 0; (6)
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FIG. 1. Top panel: potential of Eq. (3) (thick line) and magni-
tude squared of 5 resonance wave functions (� � 0:8 and � �
0:1). Bottom panel: Energy spectrum of Ĥ� for � � 0:5. There
are no bound states. The continuum branch cut is rotated by�2�
with respect to the real axis, and 5 resonances are clearly
exposed.
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FIG. 2. The real part of the trial energy is above the LER
energy for all values of � (see text).
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then

 E trial > ELER: (7)

The inequality of Eq. (6) would be obviously true if we
were dealing with bound states, since then all the inverse
lifetimes would be zero, all the real parts of the overlaps
would be positive, and Ek � ELER > 0 for all k, by defini-
tion of the LER.

Equation (6), and therefore Eq. (7), also hold true for
resonances because: (1) Normalization of the trial func-
tion,

P
kReh���k j�

�
triali

2 � 1, together with the condition
given by Eq. (4) and the fact that Ek � ELER is positive for
all k > 1 (k � 1 denotes the LER), lead toP
k�1Reh���k j�

�
triali

2�Ek � ELER�> 0; and (2) normaliza-
tion also requires

P
kImh�

��
k j�

�
triali

2 � 0, so if �k�1 �
�LER is a smooth function of k, as is usually the case,
then the second term of Eq. (6) is expected to be smaller
than the first one.

We illustrate all this in Fig. 3 for our one-electron toy
example. The two conditions discussed above are shown to
hold in the region where an expansion in terms of reso-
nance eigenstates is adequate (shaded region in the figure).
Based on the result of Fig. 2 showing that Etrial > ELER

even outside this range, we infer that the LER energy is
embedded inside a left half-circle in the complex energy
plane: the left half of the circle where the exact solution is
embedded according to Ref. [16]. We summarize it by
saying that under the conditions stated above, the energy
of the LER, ReELER � ELER, which is associated with the
real part of the complex eigenvalue of the non-Hermitian
Hamiltonian, satisfies the following modified complex
variational principle:

 E LER � min
��

Reh���jĤ�j��i: (8)

Hohenberg-Kohn theorem.—Having established the
plausibility of Eq. (7) for trial functions that can be ex-
panded in terms of resonance wave functions, an analog of
the Hohenberg-Kohn theorem follows. Two potentials v�1	ext

and v�2	ext that do not support any bound state, and differ by
more than a constant, cannot yield the same LER density
n��r� � h���LERjn̂�re

i��j��
LERi. To see this, assume that the

two potentials could in fact give rise to the same LER
density:

 h���1	LERjn̂�re
i��j��1	LERi � h�

��2	
LERjn̂�re

i��j��2	LERi; (9)

where ��j	LER is the LER eigenstate of the Hamiltonian of
Eq. (2) with external potential v�j	ext. Using ��1	LER as a trial
function to estimate the lowest-energy eigenvalue of Ĥ�2	� ,
we get by virtue of Eqs. (7) and (9) that Reh���1	LERjT̂� �
V̂ee;�j�

�1	
LERi> Reh���2	LERjT̂� � V̂ee;�j�

�2	
LERi. But the oppo-

site result is obtained by employing ��2	LER as a trial func-
tion to estimate the lowest-energy eigenvalue of Ĥ�1	� . We
conclude that the original assumption of Eq. (9) is impos-
sible if v�1	ext and v�2	ext differ by more than a constant.

To see the problem from a different perspective, we now
examine the Levy-Lieb [18,19] constrained search algo-
rithm in the present context. The LER state is the one that,
among all the normalized wave functions that make the
complex energy h���jĤ�j��i stationary, minimizes the
expectation value of Reh���jĤ�j��i. Following Levy, we
perform the minimization in two steps, first constraining
the search among all the wave functions yielding a pre-
scribed complex density, f�� � n�g, and then among all
possible complex densities, fn�g. The energy of the LER is
then given by:

 E LER � min
n�

Re
�Z

dzn��z�vext�z� � F��n�	
�

s:t:fc1g;

(10)

 ReF��n�	 � min
���n�

�Reh���jT̂� � V̂ee;�j��i	s:t:fc2g;

(11)

and constraints c1 and c2 are as discussed before:

 c1:
Z
dzn��z� � N; (12)

 c2:
�
���

h���jĤ�j��i � 0: (13)

In spite of the formal resemblance of Eq. (10) with the
density-variational principle that serves as a starting point
to derive Kohn-Sham equations, condition c2 makes of this
a very different problem. It introduces a seemingly very
complicated explicit dependence of F��n�	 on vext, pre-
venting proof of the HKT analog.

But we now invoke Eq. (8). According to it, constraint
c2 can be lifted altogether. The resulting (unconstrained)
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FIG. 3 (color online). Top panel: Total overlap S of a trial
function ��

��x� � Cxei�e��x
2e2i�

with the resonance eigenfunc-
tions ��

k of Ĥ�: S � j
P5
k�1h�

��
k j�

�
�i

2j. The expansion is ade-
quate in the shaded region. Deviations from S � 1 for large �
diminish when broader resonances are included in the expansion
[17]. Bottom panel: left-hand side of Eq. (6) (thick line), along
with the contribution to it from the real part of the overlaps (solid
line) and the imaginary part (dotted line).
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search of Eq. (11) defines a universal functional ReF��n�	,
just as in the ground-state case. There is no explicit depen-
dence of ReF��n�	 on vext, and the HKT analog is
established.

To access the lifetime of the LER, denote by ��� the
wave function that, within the set of functions yielding n�,
minimizes the real part of h���jĤ�j��i subject to the nor-
malization constraint c1. It is a functional of n�, ����n�	. If
we further define ImF��n�	 as the imaginary part of

 F��n�	 � h �����n�	jT̂� � V̂ee;�j ����n�	i; (14)

then the inverse lifetime of the LER is given by the
imaginary part of the sum of F��n�	 and

R
dzn��z�vext�z�.

When apart from being the resonance of lowest energy,
the LER is also the resonance of longest lifetime, a typical
case (e.g., our toy example), then Eq. (10) can be subsumed
by a two-component minimization yielding at the same
time the energy E and inverse lifetime � � @=� of the
LER:
 

E

�

 !
LER

� min
n�

Re

�2Im

 !




�Z
dzn��z�vext�z� � F��n�	

�
s:t:fc1g: (15)

We have admittedly not addressed here the two funda-
mental questions that immediately arise: (1) What is the
best way to cast the complex analog of the Kohn-Sham
scheme for practical calculations and (2) what is the func-
tional form of F��n�	? For one electron, it is simple to
show that F��n�	 � e�2i�F�n�	, where F�n�	 is the
ground-state functional evaluated on the complex density.

Our derivation applies to the LER of unbound systems
such as negatively charged atoms or molecules. However,
using the Gel’fand-Levitan [20] equation it is quite
straightforward to extend our formulation to systems that
support also bound states. It has been shown already that
using the Gel’fand-Levitan equation one can remove
bound states from the single-particle spectrum and obtain
an effective potential which supports resonances only [21].
However, from a numerical point of view it might be a
heavy task problem since the computation of new effective
potentials that support the same resonances as the original
problem, but not any of the N bound states, requires the
often prohibitive calculation of those bound-state wave
functions. Our extension of the HKT for the LER of un-
bound systems holds also for atoms and molecules in the
presence of external dc or ac electric fields, since the field-
free ground (bound) state becomes a resonance state as the
dc or ac fields are turned on (for the calculation of such
resonances via complex scaling, see Refs. [2,4]). We there-
fore anticipate applications for conductance calculations in
molecular electronics.

Negative electron affinities.—We comment briefly on
the computation of negative electron affinities as measured
experimentally for many molecules via electron transmis-

sion spectroscopy [22]. The standard definition of the
electron affinity is: A � E�N�1	 � E�N	, where E�N�1	 is
the ground-state energy of the neutral molecule, and E�N	

is the ground-state energy of the negative ion. The latter is
precisely equal to E�N�1	 when the ion is not bound, so A is
zero in such cases. Confusion arises in practice when a
finite basis set used in DFT calculations artificially binds
the ion and predicts finite (negative) values for A. But the
experiments measure a different quantity: ~A � E�N�1	 �

ReE�N	LER and this is not directly accessible via standard DFT
calculations in the limit of an infinite basis set. It is none-
theless interesting that ~A� A is accurately given in many
instances by the error associated with the use of a finite
basis set (see discussion in Ref. [23]).
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