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We present a theoretical treatment of Bragg scattering of a degenerate Fermi gas in the weakly
interacting BCS regime. Our numerical calculations predict correlated scattering of Cooper pairs into a
spherical shell in momentum space. The scattered shell of correlated atoms is centered at half the usual
Bragg momentum transfer, and can be clearly distinguished from atoms scattered by the usual single-
particle Bragg mechanism. We develop an analytic model that explains key features of the correlated-pair
Bragg scattering, and determine the dependence of that scattering on the initial pair correlations in the gas.
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Bragg scattering provides a high precision spectroscopic
technique that has been adapted from materials science to
probe Bose-Einstein condensates [1,2]. In condensate sys-
tems, signatures of soliton evolution [3], phase fluctuations
[4], center-of-mass motion [5], and vortex structure [6], are
accessible due to the velocity selectivity of Bragg spec-
troscopy. It has been proposed (e.g., [7–12]) that Bragg
spectroscopy of an ultracold Fermi gas can provide insight
into the Cooper paired regime, and the transition through a
Feshbach resonance to molecule formation.

In this Letter we develop Bragg spectroscopy as a probe
of ultracold atoms by investigating Bragg scattering of a
weakly attractive Cooper paired Fermi gas. Our calcula-
tions differ from existing theoretical treatments by:
(i) providing explicit solutions for the time evolution of
the matter field subjected to a moving optical grating,
allowing direct observation of the dynamic response of
the gas in momentum space, (ii) investigating in detail
the large momentum transfer regime, where the atoms
scatter well outside the Fermi sea, and (iii) determining
the Bragg spectrum of the Fermi gas in an analogous way
to the case for a Bose-Einstein condensate [2,13], by
calculating the momentum transfer per atom over a range
of Bragg frequencies. The key result we report is Bragg
scattering of correlated atom pairs via generation of a
Bragg grating in the pair potential.

Our theoretical treatment is based on a mean-field de-
scription of a degenerate weakly attractive homogeneous
Fermi gas. Two spin states are present in equal numbers,
with field operators  ̂"�r; t� and  ̂#�r; t�, and the collisional
interaction Hamiltonian is approximated by a number of
single-particle terms. For convenience, the optical Bragg
field is chosen so that it does not flip the particle spin.
Implementing the Heisenberg equations of motion and the
Bogoliubov transformation,

  ̂ ";#�r; t� �
X
k

�uk�r; t��̂k";k# � v�k�r; t��̂
y
k#;k"�; (1)

yields [14–16] the time-dependent Bogoliubov de Gennes
equations,
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@
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where

 L�r; t� � �
@

2r2

2M
	 Vopt�r; t� � EF 	U�r; t�: (3)

The Hartree potential is U�r; t� � Vh ̂y��r; t� ̂��r; t�i, the
pair potential is ��r; t� � �Vh ̂"�r; t� ̂#�r; t�i, and uk�r; t�
and vk�r; t� are the time-dependent quasiparticle ampli-
tudes. We denote the Fermi energy by EF � @!F �
@

2k2
F=2M, the atom mass by M, and the strength of the

collisional interaction between fermions by V (V < 0). The
Bragg field is turned on at t � 0 and has the form
Vopt�r; t� � A cos�q 
 r�!t�=2; where the wave vector q
is aligned with the x axis.

The description of the collisional interaction in this
problem requires a more realistic collisional potential
than a contact potential, since we find that Bragg scattering
is sensitive to the range of the potential. However, that
sensitivity is weak for any realistic range, and we approxi-
mate the collisional potential using a contact potential with
strength V and momentum space cutoff @kc, where V and
kc are chosen to give the correct scattering length and
correct momentum space range. While the static BCS
properties are insensitive to kc [17], the total number of
Bragg scattered atoms depends on the value of the cutoff
kc, and in fact the number of pairs scattered vanishes on
setting kc ! 1. Thus, kc must be chosen finite as above.
Full details will be given elsewhere [16].

Full details of our numerical method are beyond the
scope of this Letter. Briefly, we have solved Eq. (2) pro-
jected onto a momentum space sphere with radius @kc. The
initial state is the BCS ground state, i.e., the solution of the
time-independent form of Eq. (2) with Vopt � 0, which is
obtained iteratively. The dynamic evolution of the gas is
then determined using a fourth order Runge-Kutta method
[18] to solve Eq. (2) for a large number of quasiparticle
amplitudes. In principle all quasiparticle modes with mo-
mentum components lying inside the momentum space
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sphere of radius @kc should be evolved. However, compu-
tational resources limit us to explicitly propagating only
quasiparticle modes for which k lies inside a cylinder
oriented along the kx axis and well within the sphere of
cutoff radius kc. The quasiparticle modes that lie between
the cylinder and the surface jkj � kc are treated more
simply by an approximate method [16]. The size of the
cylinder, and the number of quasiparticle modes within it,
are chosen to ensure accuracy of the method (e.g., for the
results here, approximately 40 000 quasiparticle modes are
evolved explicitly).

We consider Bragg scattering of a zero temperature
homogeneous Fermi gas. Figures 1(a)–1(c) show the mo-
mentum space column density of a Bragg scattered Fermi
gas for different Bragg frequencies !. The column density
is
R
n�k; t�dkz, with the number density at momentum @k

given by n�k; t� � Ch�̂y��k; t��̂��k; t�i, where �̂��k; t� �R
 ̂��r; t� exp��ik 
 r�d3r=�L�3=2 is the field operator in

momentum space, C is a constant chosen such thatR
n�k; t�d3k � 1, and L3 is the computational volume.

The two spin states are scattered identically because of
our choice of a spin preserving Bragg field.

The initial cloud, centered at k � 0, has an approximate
width given by the modified Fermi wave vector k0F, defined
by @

2k02F=2M � EF �U�0� (e.g., [19]). In the presence of
the Bragg field the atoms scatter by two different mecha-
nisms which we refer to as single-particle scattering and
correlated-pair scattering.

In single-particle Bragg scattering an atom receives a
momentum kick of n@q and energy n@!, where n is an
integer. A resonance condition selects primarily one value
of n, and we consider ! in the range of first order Bragg
scattering (e.g., [20]), where n � 1 is dominant. This
results in a cloud of atoms centered at k � q, as observed
in Figs. 1(a)–1(c). A faintly visible cloud at k � �q is
also observed in Figs. 1(a)–1(c) due to off resonant scat-
tering into the n � �1 order. The atom clouds arising from
single-particle Bragg scattering would also be observed in
the case of Bragg scattering of a noninteracting Fermi gas
(V � 0).

Figures 1(a)–1(c) also show scattering of atoms into a
spherical shell centered at k � q=2. The atom shell is due
to correlated-pair scattering, and is not observed in the case
of a noninteracting gas. Correlated-pair scattering has a
frequency threshold denoted !thres, at which atoms are
scattered to k � q=2 [see Fig. 1(a)]. Above threshold
[see Figs. 1(b) and 1(c)], the atoms are scattered into a
spherical shell and the shell radius increases with Bragg
frequency. Atoms scattered into the shell come primarily
from the Fermi surface and are correlated about k � q=2,
as demonstrated by the pair correlation function
Gq=2�k; t� � h�̂"�q=2	 k; t��̂#�q=2� k; t�i, shown in
Figs. 1(d)–1(f) for the kz � 0 plane [21]. As well as the
ring of correlation due to the scattered pairs, we also
observe two rings of radius k0F centered at k � �q=2,
which represent correlation between an atom on the
Fermi surface of the initial cloud, and an atom in the
single-particle Bragg scattered cloud of order n � 1.

We determine the Bragg spectrum of the degenerate
Fermi gas by calculating the momentum transfer per
atom along the Bragg axis, P �t� �

R
�@k 
 q̂�n�k; t�d3k,

for a range of Bragg frequencies. The Bragg spectrum at
zero temperature is given in Fig. 2(a), and is dominated by
the broad single-particle resonance familiar from Bragg
scattering of a Bose-Einstein condensate (e.g., [20]). The
single-particle Bragg resonance is due to two-photon scat-
tering events that scatter atoms by the Bragg momentum
@q. The resonance condition is well approximated using
energy conservation arguments for noninteracting parti-
cles, and by considering an atom scattered from momen-
tum @kR to @�kR 	 q� we obtain the resonance condition
!sp � @�q2 	 2kR 
 q�=2M. The single-particle resonance
[see Fig. 2(a)] is centered at ! � @q2=2M, and its width is
�! � 2@qk0F=M	 A=@, where the first term accounts for
the momentum width of the initial cloud, and the second
term is due to power broadening (e.g., [20]).

Correlated-pair Bragg scattering occurs on the red-
detuned side of the single-particle resonance, leading to a

 

FIG. 1 (color online). Column density and pair correlation
function of a Bragg scattered three-dimensional homogeneous
Fermi gas at zero temperature. The momentum distribution of
the initial cloud is saturated on the chosen scale in order to
observe the scattered atoms. Parameters are A � 1:80EF, q �
4:80kF, t � 8:22=!F, kc � 30kF, kFa � �0:427 [i.e., U�0� �
�0:256EF and ��0� � 0:049EF], and (a),(d) ! � 9:20!F,
(b),(e) ! � 10:8!F, and (c),(f) ! � 23:6!F.
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slight asymmetry in the Bragg spectrum [see Fig. 2(a)].
The correlated scattering, which gives rise to the distinctive
spherical shell of atoms in momentum space [see
Figs. 1(a)–1(c)], depends critically on the presence of
Cooper pairs, and can not be understood by the usual
single-particle scattering mechanism. Correlated-pair scat-
tering is associated with the formation of a moving grating
in the pair potential, which is well approximated by
��r; t� � �0�t� 	�1�t� exp�i�q 
 r�!t��. The pair po-
tential coefficients �0 and �1, after the Bragg pulse, are
shown in Fig. 2(b), where we observe that the homoge-
neous term �0 is depleted in the region of the single-
particle Bragg resonance, while the moving grating ampli-
tude �1, is created over a slightly more extended region.
Cooper pairs (of zero center-of-mass momentum) scatter
from the moving grating in the pair potential to center-of-
mass momentum @q. At threshold [see Fig. 1(a)], the pair
potential grating provides just sufficient energy to scatter
each atom of a pair to a final momentum @q=2. Above
threshold [see Figs. 1(b) and 1(c)], excess energy provided
by the pair potential grating is distributed equally between
the two atoms of a pair, and the individual momenta of the
atoms become @�q=2� krel�. A resonance condition for
correlated-pair Bragg scattering can be obtained from en-
ergy conservation arguments to be!pair � @�q2=4	 k2

rel �

k02F �=M, which for krel � 0 gives the threshold frequency
!thres � @q2=4M� @k02F=M. Above threshold, the addi-
tional kinetic energy @

2k2
rel=2M carried by each atom of a

scattered pair is given by !�!thres � @k2
rel=M, as con-

firmed by our numerical calculations.
We can understand some important features of Bragg

scattering of correlated pairs with an analytic treatment.
Because of the periodicity of the Bragg field, the solutions
of Eq. (2) have the Bloch form, and can be expanded as

 uk�r; t� � eik
r
X
n

ak
n �t�ein�q
r�!t�

vk�r; t� � eik
r
X
n

bk
n �t�e

in�q
r�!t�;
(4)

where n is an integer. The self-consistent potentials are
periodic, with the translational symmetry of the Bragg
field, i.e.,

 U�r; t� �
X
n

Un�t�ein�q
r�!t�

��r; t� �
X
n

�n�t�e
in�q
r�!t�:

(5)

Evolution equations for the coefficients ak
n �t� and bk

n �t� can
be derived from Eq. (2) to be

 i@
dak

n �t�
dt

� @!a
n�k�ak

n �t� 	
A
4
�ak
n	1�t� 	 a

k
n�1�t��

	
X
m

Um�t�a
k
n�m�t� 	

X
m

�m�t�b
k
n�m�t�; (6)

and

 i@
dbk

n �t�
dt

� @!b
n�k�bk

n �t� �
A
4
�bk
n	1�t� 	 b

k
n�1�t��

�
X
m

Um�t�b
k
n�m�t� 	

X
m

��m�t�a
k
n	m�t�; (7)

where @!a;b
n �k� � ��@2�k	 nq�2=2M� EF� � n@!.

Initially the only nonzero coefficients are ak
0 (for jkj *

k0F) and bk
0 (for jkj & k0F). The mean-field coefficients Um

and �m must be obtained self-consistently, in particular

 �m�t� � � �V
X
k

X
n

ak
n �t�b

k�
n�m�t�; (8)

with �V � T=�1� �T�, where T is the low energy T-matrix
and � � Mkc=2�2

@
2 [16,17].

First order correlated-pair Bragg scattering is mediated
by a moving grating in the pair potential, arising due to
termsm � 1, n � 0, 1 in Eq. (8) becoming nonzero. Those
terms are seeded by single-particle Bragg scattering events
in which an atom on the Fermi surface is scattered by
momentum @q. It can be shown, from Eqs. (6) and (7),
that single-particle transitions generate coefficients ak

1 (for
jkj * k0F) and bk

�1 (for jkj & k0F). In the region of the
Fermi surface, jkj � k0F, �1 is generated due to the for-
mation of contributions ak

1b
k�
0 and ak

0b
k�
�1. Physically that

corresponds to seeding pair correlations about k � q=2.

 

FIG. 2 (color online). (a) Bragg spectrum of a three-
dimensional homogeneous Fermi gas at zero temperature.
Parameters are A � 1:80EF, q � 4:80kF, t � 8:22=!F, kc �
30kF, and (dashed) kFa � 0 and (solid) kFa � �0:427. The
noninteracting case is calculated with the initial momentum
width of the gas modified to agree with the interacting case,
i.e., k0F � 1:12kF. The vertical dotted line indicates ! � !thres.
(b) Relative change �n�t� � j�n�t�j � j�n�0�j of the pair poten-
tial Fourier components (+) n � 1 and (
) n � 0 [see Eq. (5)]
for the case kFa � �0:427.
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When an atom with momentum @kR � @k0Fk̂R, is scattered
by a single-particle transition to @�kR 	 q�, it remains
correlated with its unscattered pair at momentum �@kR.
That reduces the system pairing about k � 0 (�0), and
generates a pair correlation about k � q=2 (�1) [see
Fig. 2(b)]. The correlation seeding can also be observed
in Gq=2�k; t� [see Figs. 1(d)–1(f)], where a point on the left
most circle represents correlation between an atom on the
Fermi surface of the initial cloud and its pair which has
been scattered by q.

Following the initiation of the pair potential grating, its
subsequent development can be understood in terms of a
truncated version of Eqs. (6) and (7), i.e.,

 i@
d
dt

ak
0 �t�

bk
�1�t�

" #
�

�a0�k� �1�t�
��1�t� �b�1�k�

� �
ak

0 �t�
bk
�1�t�

" #
; (9)

which is appropriate for describing the scattered pairs. In
Eq. (9), �a;bn �k� � @!a;b

n �k� �U0, and �1�t� �
� �V

P
k a

k
0 �t�b

k�
�1�t�. The term ak

0b
k�
�1 becomes significant

only if � � �a0�k� � �
b
�1�k� � 0, i.e., when correlated

scattering transitions conserve energy (! � !thres). At
threshold, the summands in �1 have a stationary phase,
leading to enhancement of the grating amplitude �1 [see
Fig. 2(b)]. The thickness �k of the spherical shell of
scattered pairs can be estimated by assuming a frequency
width �, determined by the Bragg pulse length (� � �=t),
and setting �� � @�, to find that �k � ��M=@t	
k2

rel�
1=2 � krel.

We have investigated the dependence of correlated-pair
Bragg scattering on a range of system parameters. In
Fig. 1(b), �0:2% of the atoms are scattered by
correlated-pair Bragg scattering, and the number of scat-
tered pairs grows linearly with the length of the Bragg
pulse (until t� 70=!F). Over the range �0:18 � kFa �
�0:69, the number of pairs scattered increases quadrati-
cally with ��0� indicating the coherent nature of the scat-
tering process. For kFa � �0:689 [all other parameters as
per Fig. 1(b)] there are �6% scattered pairs. However, we
emphasize that for jkFaj * 1 the mean-field approach may
not be quantitatively accurate (e.g., [12,22]). The number
of correlated pairs scattered can be further increased by
enhancing the single-particle scattering processes that seed
the pair potential grating, either by increasing the Bragg
field strength A, or by reducing the Bragg wave vector q (to
make the seeding more resonant).

In conclusion, we have calculated solutions of the time-
dependent Bogoliubov de Gennes equations for a zero
temperature homogeneous three-dimensional Bragg scat-
tered Fermi gas, in the regime where the momentum trans-
fer is well outside the Fermi surface. We predict Bragg
scattering of correlated atom pairs, which has a distinctive
signature in momentum space, namely, a spherical shell of
atoms centered at half the usual Bragg momentum transfer.
Correlated-pair Bragg scattering occurs via a Bragg grating

formed in the pair potential, and has a well-defined fre-
quency threshold on the red-detuned side of the familiar
single-particle Bragg resonance. We have developed an
analytic model that explains the mechanism by which the
pair potential grating is generated, and observe that the
number of scattered pairs is proportional to the square of
the initial pairing field.

This work was supported by Marsden Fund
No. UOO0509 and the Tertiary Education Commision
(No. TAD 884).

[1] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak,
K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys.
Rev. Lett. 82, 871 (1999).

[2] D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz,
S. Inouye, S. Gupta, D. E. Pritchard, and W. Ketterle,
Phys. Rev. Lett. 83, 2876 (1999).

[3] K. Bongs, S. Burger, D. Hellweg, M. Kottke, S. Dettmer,
T. Rinkleff, L. Cacciapuoti, J. Arlt, K. Sengstock, and
W. Ertmer, J. Opt. B 5, S124 (2003).

[4] S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart,
P. Bouyer, and A. Aspect, Phys. Rev. Lett. 91, 010405
(2003).

[5] R. Geursen, N. R. Thomas, and A. C. Wilson, Phys. Rev. A
68, 043611 (2003).

[6] S. R. Muniz, D. S. Naik, and C. Raman, Phys. Rev. A 73,
041605(R) (2006).

[7] J. Ruostekoski, Phys. Rev. A 61, 033605 (2000).
[8] A. Minguzzi, G. Ferrari, and Y. Castin, Eur. Phys. J. D 17,

49 (2001)
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