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We show that local and semilocal strings in Abelian and non-Abelian gauge theories with critical
couplings always reconnect classically in collision, by using moduli space approximation. The moduli
matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of
generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two
vortices, which is known to give the reconnection of the strings.
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Introduction.—The issue of reconnection (intercommu-
tation, recombination) of colliding cosmic strings attracts
much interest recently [1–3], owing to the fact that the
reconnection probability is related to the number density of
the cosmic strings, which is strongly correlated with pos-
sible observation of them. However, solitonic strings may
appear in numerous varieties of field theories, which cer-
tainly makes any prediction complicated. In this Letter, we
employ the moduli matrix formalism [4] to show that, in a
wide variety of field theories admitting supersymmetric
generalization, inevitable reconnection of colliding sol-
itonic strings (i.e., reconnection probability is unity) is uni-
versal. The inevitable reconnection of local strings in
Abelian-Higgs model [5,6] has been known for decades,
and for non-Abelian local strings in U�NC� gauge theories
with NF�� NC� flavors, this universality was found in [7]
by a topological argument. Here, via a different logic and
explicit computations, we show the concrete dynamics of
the inevitable reconnection (note that [7] does not describe
dynamics). Furthermore, our results extend the universality
to semilocal strings [8] (NC < NF), which is consistent
with recent numerical simulations [9,10]. Stable semilocal
strings are realistic and generic in many supersymmetric
grand unified theories [2] and cosmologies [3].

The reconnection of the vortex strings can be understood
[5] as right-angle scattering of vortices in head-on colli-
sions [11] appearing in a spatial slice. We use moduli space
approximation where the motion of the strings is slow
enough, to find universal right-angle scattering of vortices
on two spatial dimensions. The moduli matrix formalism
[4] gives a well-defined set of moduli coordinates, and with
that the analysis of the motion is quite simple and robust.
Our results will be a basis for further analyses on coupling
to gravity and application to cosmology, and possible
comparison against cosmic super(D-)strings [6,12,13].

Non-Abelian vortices.—We deal with U�NC� gauge the-
ory coupled to NF Higgs fields H (NC � NF matrix) in the
fundamental representation. Its Lagrangian is

 Tr
�
�

1

2g2F��F
���D�H�D

�H�y�
g2

4
�c1NC�HH

y�2
�
:

The Higgs self-coupling is put equal to the gauge coupling
g (critical coupling) so that the theory admits supersym-
metric extensions. In the following, we set c > 0 to ensure
stable vortex configurations. The vortex equations for
strings extending along the x3 axis are

 D �zH � 0; F12 �
g2

2
�c1NC �HH

y� � 0; (1)

where z � x1 � ix2. k vortex solutions saturate the
Bogomol’nyi energy bound E � 2�ck. The moduli matrix
formalism provides a method to identify moduli (collective
coordinates) of the solitons and to describe the dynamics of
the solitons by collective motion. Once the moduli matrix
H0�z� which is an NC by NF holomorphic matrix with
respect to z is given, one can solve the Eqs. (1) as [4,14,15]

 H � S�1H0�z�; A1 � iA2 � �2iS�1 �@zS; (2)

 @z���1 �@z�� �
g2

4
�c1NC ���1H0H

y
0 �; (3)

where S�z; �z� takes value in GL�NC;C� and � �
S�z; �z�Sy�z; �z� is a gauge invariant quantity. Equation (3),
called the master equation, is assumed to allow the unique
and smooth solution for any given H0. This is consistent
with the index theorem [16]. Elements of H0 are polyno-
mial functions of z and their coefficients are nothing but
the moduli parameters. The moduli space of the solitons is
parametrized by these moduli. The degree of det�H0H

y
0 �

equals the vortex number k. In this Letter we use k � 2
for describing collision of two vortex strings. We need
to fix the V equivalence relation fS�z; �z�; H0�z�g 	
fV�z�S�z; �z�; V�z�H0�z�g with V�z� 2 GL�k;C� to get rid
of unphysical redundancy. After this fixing, the moduli
matrix H0 including 2kNF independent parameters corre-
sponds, by one to one, to a physical configuration.
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The universal reconnection is shown based on the fact
that the moduli parameters linear in H0 [see (5) below]
cover the whole moduli space only once. This ensures that
our analysis is generic and that the moduli metric is smooth
and nonvanishing. The Kähler potential of the effective
theory of the moduli parameters was derived in [17]:

 K � Tr
Z
d2z
c log�� c�1��1H0H

y
0 �O�1=g2��: (4)

This Kähler potential can be thought of as an action func-
tional for �: the equation of motion for �, �K=�� � 0, is
identical with the master Eq. (3). The smoothness of the
solutions guarantees the smoothness of the Kähler poten-
tial and the absence of ultraviolet divergence. Infrared
divergence of (4) can exist as non-normalizable modes,
which will be discussed later. The one-to-one correspon-
dence between H0 and the physical configurations implies
nonvanishing metric in terms of well-defined parameters.

Reconnection of non-Abelian local strings.—We deal
with the local strings (NC � NF), followed by the semi-
local strings (NC < NF). We will find that essential feature
can be captured in the case NC � NF � 2. Single vortex
(k � 1) moduli space is C�CP1 with C the position of
the vortex string in z plane and CP1 the orientational
moduli concerning the internal color-flavor space [16,18],
while the moduli space of separated two (k � 2) vortices is
a symmetric product �C�CP1�2=S2. The reconnection
problem is related to how they collide in the full k � 2
moduli space, parametrized by the moduli matrices [15]

 H�0;2�0 �
1 �az�b
0 z2��z��

� �
; H�1;1�0 �

z�� ��
�~� z� ~�

� �
:

(5)

The superscripts label patches covering the moduli space,
but one more patch (2,0) is needed to cover the whole
manifold. Since the (0,2) patch covers all the moduli space
except lower-dimensional submanifolds, this is sufficient
for computing the reconnection probability. The moduli
space of the two coincident vortices in this theory has been
studied in [7,19,20] and found to be C�WCP2

�2;1;1� ’

C�CP2=Z2, which any collision of strings goes through.
The locations z1;2 of the vortices and the orientation vectors
~�1;2 of the internal moduli are determined by

 detH0 � �z� z1��z� z2�; H0�z � zi� ~�i � 0: (6)

We parametrize the vectors as ~�i � �bi; 1�
T with bi �

azi � b, and the relations to the original parameters are
 

a �
b1 � b2

z1 � z2
; b �

b2z1 � b1z2

z1 � z2
;

� � z1 � z2; � � �z1z2:
(7)

Physical meaning of the parameters (zi, bi) is clear, but
they can cover only the subspace z1 � z2 because the
relations (7) are not defined at z1 � z2.

Let us consider slow motion of the moduli parameters,
as done by Manton [21], to show the universal right-angle

scattering in the vortex collision. We have to use the
parameters (a, b, �, �), not (zi, bi), because, as we have
shown, the moduli space metric with respect to the former
parameters (which appear linearly in the moduli matrix
H0) is smooth and nonvanishing. With these ‘‘well-
defined’’ parameters of the moduli space, at least for a
certain period of time around the collision moment, one
can approximate the moduli motion as linear functions of t
(since the coordinates are subject to free motion):

 a � a0 � 	1t�O�t2�; b � b0 � 	2t�O�t2�; (8)

 � � 0�O�t2�; � � 	3t�O�t2�; (9)

where 	i, a0, and b0 are constant. Here � is the center of
mass of the vortices (see the later discussion for identifying
the decoupled center-of-mass parameter), and thus set to be
zero around t � 0. We have used a time translation so that
a constant term in ��t� vanishes. This is equivalent to
choose the collision moment as t � 0.

Physical interpretation of the motion (8) and (9) can be
extracted from the solution in terms of zi and bi using (7):

 z1 � �z2 �
�������
	3t
p

�O�t3=2�; (10)

 bi � b0 � ��1�i�1a0

�������
	3t
p

�O�t�: (11)

The first equation shows that the vortices are scattered by
the right angle; since the time dependence is

��
t
p

, when time
varies from negative to positive, the vortex moves from the
imaginary axis to the real axis. As stressed before, this
right-angle scattering means that the vortex strings are
reconnected.

When a0 � 0 in (11), the orientational moduli for each
vortex coincide, which corresponds to a reduction to the
case of the Abelian-Higgs model. Here we have shown that
even when a0 � 0 and the non-Abelian strings have differ-
ent orientational moduli at the initial time, as they ap-
proach each other in the real space, the internal moduli
approach each other; in particular, bi experiences the right-
angle scattering, too. This is the only consistent solution to
the moduli equations of motion, with generic initial con-
ditions. Note that this understanding comes from the re-
description in terms of bi and zi, while the true and correct
motion in the moduli space is determined by the moduli
parameters (a, b, �, �), which have linear dependence in t.

Although we have shown [by using the (0,2) patch] that
the reconnection probability is unity, it is instructive to
look at the other patches to see what happens in the sub-
manifold(s) of the moduli space which cannot be described
by the (0,2) patch. In fact, the submanifold includes the Z2

singularity of the CP2=Z2. This corresponds to the situ-
ation where the vortices sit in two decoupled U�1� sub-
sectors of the U�2� in the original field theory and where
strings should pass through each other in collision in that
special case. In the (1,1) patch, the condition for coincident
vortices, namely detH0 � z2, reads

 

~� � ��; � ~�� �~� � 0; (12)
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which can be parametrized by X and Y through XY �
�� � ~�, X2 � �, Y2 � �~�. The Z2 symmetry �X; Y� 	
��X;�Y� is manifest [20]. Note that the orbifold singu-
larity X � Y � 0 (� � � � ~� � ~� � 0) is present only
in the submanifold z1 � z2, while the full moduli space is
smooth. One can confirm this by computing the Kähler
potential explicitly around the origin of the (1,1) patch,
K � 2�c�j�j2 � j ~�j2 � j�j2 � j~�j2� � higher, which
shows that there the metric is smooth and nonvanishing.
Going to the (X, Y) coordinates on the submanifold, we
obtain a metric of a Z2 orbifold, K / �jXj2 � jYj2�2.

Let us study geodesic motion on the moduli space to see
the reconnection. After imposing the center-of-mass con-
dition z1 � �z2, we obtain the motion of the moduli

 � � � ~� � �XY � s1t�O�t2�; (13)

 ��X2� s2t�O�t2�; ~���Y2� s3t�O�t2�; (14)

where X, Y, and s1;2;3 are constant. We have chosen the
collision moment to be t � 0, so that the constant terms in
the above satisfy the constraint (12). The orientational
moduli bi are obtained as bi � �=�zi ���.

From this generic solution of the equations of motion,
we compute (for jXj2 � jYj2 � 0)

 z1 � �z2 �
��������������������
�2 � �~�

q
�

����
st
p
�O�t3=2�; (15)

 bi � XY�1 � ��1�iY�2
����
st
p
�O�t�; (16)

where s � �2s1XY � s3X
2 � s2Y

2. Therefore, we con-
firm the generic reconnection for s � 0. The condition s �
0 is equivalent to 	3 � 0 in the analysis of the (0,2) patch,
because among the patches we have a relation � � �~��
� ~� � st. s � 	3 � 0 can be achieved only by finely tuned
initial conditions, so we are not interested in it.

When X � Y � 0 [this point is not covered by the (0,2)
patch, so the identification s � 	3 fails], we obtain

 z1 � �z2 �
��������������������
s2

1 � s2s3

q
t�O�t3=2�; (17)

 bi � s1s�1
3 � ��1�i�1s�1

3

��������������������
s2

1 � s2s3

q
�O�t1=2�; (18)

which shows no reconnection. Note that this finely tuned
collision allows constant nonparallel orientations b1 � b2

at the collision, in contrast to the general case (11) and
(16), where b1 � b2 at t � 0. One observes that the re-
connection is intimately related to the parallelism of the
orientation vectors bi, as is along the intuition. But the
significance is that parallel bi at the collision moment
follows from generic initial conditions, which is clarified
here in the explicit computations in the moduli matrix
formalism.

For NC � NF > 2 (the orientational moduli space is
CPNC�1), the same argument finds that the probability is
unity. The moduli matrix of (0; � � � ; 0; 2) patch is

 H�0;���;0;2�0 �
1NC�1 ~az� ~b
~0T z2 � �z� �

 !
: (19)

The center-of-mass parameter is identified with � and we
put it zero. Then, we have � � z2

1, and the solution of the
equation of motion for � is the same as (9), after the time
translation. Finally we have (10); therefore, we conclude
that reconnection occurs, irrespective of the other moduli
parameters ~a and ~b. Because the (0; 0; � � � ; 2) patch covers
generic points of the moduli space, the reconnection proba-
bility is unity. The results are completely consistent with
[7], which used a different logic though.

Reconnection of semilocal strings.—We shall show that
the reconnection probability is unity also for the semilocal
strings, NC < NF. We follow the same logic and find that it
applies to rather generic theories, showing universality of
reconnection. It is enough to consider the simplest example
with NC � 2 and NF � 3. The moduli matrix is [4]

 H0 �
1 �az� b �ad
0 z2 � �z� � dz� e

� �
: (20)

In the following, we shall show that (i) even in this semi-
local case the center-of-mass coordinate is � and thus put
to be zero, and (ii) the parameter d (which is associated
with the size of the vortex) and the combination bd� ae�
ad� are non-normalizable and put to be constant. Using
these facts, the logic leading to the reconnection is the
same for the remaining normalizable parameters: z1 �����
�
p
�

�������
	3t
p

. We find the universality in reconnection.
Note that the additional moduli parameters appearing
from the extra flavors, d and e, do not play any role in
showing the reconnection. This is clearly the same for
more general non-Abelian semilocal strings. With the
help of the moduli matrix, one can also show that the
reconnected semilocal strings have the same width, which
is expected from a geometrical viewpoint.

Let us identify the non-normalizable modes studying
possible infrared divergence in the Kähler potential (4).
The asymptotic boundary condition for the master Eq. (3)
is �! �1=c�H0H

y
0 , and using the form ofH0 (20), we find

only the first term in (4) is relevant. After a Kähler trans-
formation, K is evaluated for large jzj,

 K 	 2�c�jdj2 � jbd� ae� ad�j2� logL; (21)

where in the last expression we introduced a cutoff radius
L�! 1�. This divergence shows that d and the combina-
tion bd� ae� ad� are non-normalizable. We have to fix
these modes to be constant, so that the effective Lagrangian
is finite. In other words, motion of these parameters is
frozen because their kinetic term diverges and any motion
costs infinite energy. Other parameters are normalizable,
oppositely to the single vortex case [22].

Next, we provide a method to determine the center-of-
mass parameter, which is decoupled from the others. We
write the moduli matrix in the following form,
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 H0 �
1 �a�z� z3� �ad
0 �z� z1��z� z2� d�z� z4�

� �
(22)

in which the parameters are not the ‘‘well-defined’’ pa-
rameters. In this form, there is a translation symmetry z!
z� �, zi ! zi � �. Let us assume that z0, which is a linear
combination of z1, z2, z3, and z4, is the center-of-mass
parameter. The other two parameters independent of z0

should be selected properly from the three z0i � zi � z0

(i � 1, 2, 3, 4). We compute the metric from the Kähler
potential for this set of independent coordinates. The
complete decoupling of z0 from the remaining parameters
is ensured if the metric component gi�0 � �2K=�z0i��z0

vanishes. We can compute it as gi�0 � �
�
�z0i
�R

d2z �
� �z

~K�z; z0; z0j� � �
�
�z0i

H
dz ~K, where ~K is the inte-

grand of the Kähler potential, and we used the fact that
z0 dependence in ~K is always through the combination z�
z0. The explicit expression (22) gives, after an appropriate
Kähler transformation, for large jzj, � �

�z0i

H
dzc log�1�

z1�z2

z � c:c:� � � �� � 4�c �
�z0i

z1�z2

2 . Vanishing of this

means that z0i is orthogonal to the combination z1 � z2,
which shows that the center-of-mass parameter is z0 �
�z1 � z2�=2 � �=2. This result is nontrivial, because there
are other dimensionful parameters z3 and z4 which might
have been involved with the definition of the center of
mass.

Conclusions.—The moduli matrix formalism has shown
that local and semilocal strings in Abelian and non-Abelian
gauge theories with critical couplings always reconnect
classically in collision.

While we studied the critical coupling in this Letter,
noncritical region (which can be smoothly deformed
from the critical coupling) has the same universality, since
in the moduli space it is described by introduction of
potential terms along relative position moduli induced by
attractive (repulsive) force between type I (II) strings. Even
for the repulsive case two strings must collide, because
parts of two strings far from the collision point do not feel a
force and the potential induced around the collision point is
negligible compared with the total string energy. Adding
small mass terms breaking flavor symmetry can be treated
similarly (see, for example, [7] ).

The universal reconnection found in this Letter uses the
moduli space approximation, and is valid below the energy
scale of the first massive excitation in the soliton back-
ground. In the case that collision speed exceeds this limi-
tation, one needs incorporation of the massive modes. As in
the case of Abelian-Higgs model, numerical simulations
[9,10] showed robustness of the reconnection even for high
energy collisions. We hope that, in the future observation,
this universality may help for distinguishing solitonic
strings from cosmic superstrings or D-branes which have

lower reconnection probabilities [6,13]. The moduli matrix
formalism has opened up new paths to analyze
Bogomol’nyi-Prasad-Sommerfield solitons. It would be
intriguing to apply it further to more involved or realistic
situations, such as cosmic string webs and thermal phase
transitions.
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