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We argue that deconfinement in anti–de Sitter space models of quantum chromodynamics (AdS/QCD
models) occurs via a first order Hawking-Page type phase transition between low temperature thermal
AdS and a high temperature black hole. Such a result is consistent with the expected temperature
independence, to leading order in 1=Nc, of the meson spectrum and spatial Wilson loops below the
deconfinement temperature. As a by-product, we obtain model dependent deconfinement temperatures Tc
in the hard- and soft-wall models of AdS/QCD. Our result for Tc in the soft-wall model is close to a recent
lattice prediction.
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I. INTRODUCTION

The anti–de Sitter space—conformal field theory (AdS/
CFT) correspondence [1–3] relating type IIB string theory
on AdS5 � S5 and N � 4 super Yang-Mills (SYM) the-
ory has led to qualitative advances in our understanding of
QCD and the nature of confinement. Reference [4] related
confinement in N � 4 SYM on a sphere to a Hawking-
Page phase transition in the dual gravitational description.
The papers [5–7] realized confinement in related super-
symmetric theories by finding gravitational descriptions
that capped off the geometry in a smooth way in the
infrared at small radius. The gravitational descriptions in
these last three papers are cumbersome, but the geometric
insight is clear: cutting off the geometry at small radius
produces confinement in the dual gauge theory. Based on
this insight, Ref. [8] studied a far simpler model: AdS5

where the small radius region is removed. While such a
removal is brutal, subsequent work has shown that one gets
realistic, semiquantitative descriptions of low energy QCD
[9,10].

We analyze semiquantitatively the deconfinement phase
transition in these AdS/QCD models. We consider both the
hard-wall model of Refs. [9,10] and also the soft-wall
model of Ref. [11] where the authors study a more gentle
infrared truncation of AdS5 induced by a dilatonlike field.
This soft-wall model has the advantage of producing a
stringy meson mass spectrum (compared to the free parti-
cle in a box spectrum of the hard wall).

We find the deconfinement phase transition is dual to a
Hawking-Page [12] type first order transition between
thermal AdS at low temperature and an asymptotically
AdS geometry containing a black hole at high temperature.
The gravitational free energies of cutoff thermal AdS and
the black hole solution reveal that cutoff thermal AdS is
stable for temperatures where the black hole horizon radius
would appear inside the AdS cavity.

Perhaps based on observations that Tc ! 0 for N � 4
SYM on a sphere as the radius of the sphere gets large,

many authors have assumed (e.g., [13–15]) that the black
hole phase in these AdS/QCD models is always stable.
This assumption leads to physics inconsistent with our
expectations of gauge theories with a large number of
colors Nc, as we discuss at the end. While our argument
for a phase transition makes assumptions about the gravi-
tational action, the existence of this transition is fully
compatible with our field theory understanding.

Given that researchers are now applying AdS/CFT in-
spired models and calculations to experiment, investigat-
ing consistency and universal features of these models is
important. To cite two better known examples, Ref. [16]
used the low value of the viscosity to entropy density ratio
in these and related models to explain high elliptic flow
values in Relativistic Heavy Ion Collider (RHIC) colli-
sions. References [17] calculated the energy loss rate of
heavy quarks from AdS/CFT to gain a better understanding
of charm and bottom physics at RHIC. In the absence of
gravity duals for QCD, one approach to experiment is to
seek out universal behavior in the gravity duals we do
understand; in both models we study, we see evidence for
a first order phase transition. While AdS/CFT remains a
conjecture, it is important to check that these dual models
are consistent with field theory understanding; the phase
transition we find is fully compatible with large Nc field
theory expectations, as we argue at the end.

As a by-product of our analysis, we relate vector meson
masses to Tc. The vector mesons correspond to cavity
modes in the cutoff AdS. By matching the mass of the
lightest vector meson to experimental data, we can fix the
infrared cutoff scale. The Hawking-Page analysis then
relates this cutoff scale to Tc. Our prediction of Tc �
191 MeV for the soft-wall model is close to one recent
lattice prediction [18].

Section II analyses the Hawking-Page phase transition
for the hard and soft-wall models. Section III reviews
results of [9–11] for vector meson masses in these models
to extract a prediction for Tc. Section IV concludes with
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remarks about temperature independence of equilibrium
quantities in the confining phase at large Nc.

II. HAWKING-PAGE ANALYSIS

A. The hard-wall model

We establish a relationship between the confinement
temperature and the infrared cutoff for the hard wall as-
suming that thermodynamics is governed by the gravita-
tional part of the action. The assumption is justified at large
Nc where the gravitational part scales as N2

c while the
contribution from the mesons we consider later scales as
Nc. We consider a gravitational action of the form

 I � �
1

2�2

Z
d5x

���
g
p

�
R�

12

L2

�
: (1)

The gravitational coupling scales as �� gs � 1=Nc. There
are two relevant solutions to the equations of motion. The
first is cutoff thermal AdS with a line element

 ds2 � L2

�
dt2 � d~x2 � dz2

z2

�
(2)

where the radial coordinate extends from the boundary of
AdS z � 0 to a cutoff z � z0. The second solution is cutoff
AdS with a black hole with the line element

 ds2 �
L2

z2

�
f�z�dt2 � d~x2 �

dz2

f�z�

�
; (3)

where f�z� � 1� �z=zh�4. The Hawking temperature of
the black hole solution is T � 1=��zh�.

In both cases, we continued to Euclidean signature with
a compact time direction. In the black hole case, the
periodicity is enforced by regularity of the metric near
the horizon, 0 	 t < �zh. In thermal AdS, the periodicity
of t is not constrained.

In either case, the curvature of the solution is R �
�20=L2 and so on-shell, the gravitational action becomes

 I �
4

L2�2

Z
d5x

���
g
p
; (4)

i.e., the volume of space-time times a constant [21]. The
value of I for both space-times is infinite, so we regularize
by integrating to an ultraviolet cutoff z � �. (We divide by
the trivial infinity related to the integral over d~x.) For
thermal AdS, the regularized action density becomes

 V1��� �
4L3

�2

Z �0

0
dt
Z z0

�
dz z�5; (5)

while for the black hole in AdS, the density is

 V2��� �
4L3

�2

Z �zh

0
dt
Z min�z0;zh�

�
dz z�5: (6)

These Vi are free energy densities in the field theory.
We compare the two geometries at radius z � � where

the periodicity in the time direction is locally the same. In
other words, �0 � �zh

���������
f���

p
. After this adjustment,
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(7)

When �V is positive (negative), thermal AdS (the black
hole) is stable (see Fig. 1). Thus the Hawking-Page phase
transition occurs at a temperature corresponding to z4

0 �
2z4

h, or

 Tc � 21=4=��z0�: (8)

As the temperature increases, thermal AdS becomes un-
stable and the black hole becomes stable. At Tc, the black
hole horizon forms inside the AdS cavity, between the
boundary and the infrared cutoff, at a radius zh < z0.

B. The soft-wall model

The soft-wall model of [11], while similar to the hard
wall, requires certain additional explanations and assump-
tions. In place of (1), we have the action

 I � �
1

2�2

Z
d5x

���
g
p
e��

�
R�

12

L2

�
; (9)

where � � cz2 is a dilatonlike field with nontrivial expec-
tation value. � is assumed not to affect the gravitational
dynamics of the theory. As in [11], we assume that AdS
space solves the equations of motion for the full theory.
Additionally, we assume that the black hole in AdS (3)
satisfies the equations of motion. The on-shell action is
then (4) scaled by a dilaton dependent factor:

 I �
4

L2�2

Z
d5x

���
g
p
e��: (10)

To trust this set of assumptions, we should construct an
explicit supergravity background with these properties,
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FIG. 1. The solid line is the free energy difference in the hard-
wall model; the dashed line is the difference in the soft-wall
model. The graph was made in units where L3=�2 � c � z0 �
1.
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something we have not done. Such a solution may exist. In
string frame, the dilaton kinetic factor has the wrong sign,
and it is conceivable one may construct a nontrivial solu-
tion with a trivial stress energy tensor. For example the
dilaton-tachyon system considered by [22] has precisely
such a solution with a quadratic dilaton and linear tachyon
but also breaks Lorentz invariance [23]. Regardless of its
quantitative significance, qualitatively our answer must be
right because it conforms with our large Nc field theory
expectations, as we argue at the end.

From this on-shell action (10), we calculate the regular-
ized action densities for thermal AdS:

 V1��� �
4L3

�2

Z �0

0
dt
Z 1
�
dzz�5e�cz

2
; (11)

and for the black hole solution

 V2��� �
4L3

�2

Z �zh

0
dt
Z zh

�
dzz�5e�cz

2
: (12)

Choosing �0 as in the hard-wall model, �0 � �zh
���������
f���

p
,

 �V � lim
�!0
�V2 � V1�

�
�L3

�2z3
h


e�cz
2
h��1� cz2

h� �
1
2� c

2z4
hEi��cz2

h��:

(13)

Here, Ei�x� � �
R
1
�x e

�t=t dt. Numerically, there will be a
phase transition from thermal AdS to the black hole solu-
tion when cz2

h � 0:419035 . . . , or

 Tc � 0:491728
���
c
p
: (14)

For small temperatures (large zh), �V ! L3�=�2�2z3
h�>

0 and thermal AdS is stable. For large temperatures (small
zh), �V ! �L3�=�2�2z3

h�< 0 and the black hole solution
is stable.

III. VECTOR MESONS AND MATCHING QCD

In the previous section, we found Eqs. (8) and (14) that
related Tc to, in one case, the infrared hard-wall cutoff z0

and, in the other, the soft-wall parameter c. Here we review
results of Refs. [9–11,24] that relate z0 and c to the
spectrum of vector mesons in QCD, and thus we relate
the mass of the lightest vector meson to Tc.

In the hard and soft-wall cases, Refs. [9–11] model
vector mesons as cavity modes of a vector field in this
modified AdS space. Choosing a radial gauge where Vz �
0, these vector fields V��x; z� � V��q; z�e

iq
x satisfy the
equation of motion

 @z

�
1

z
e��@zV��q; z�

�
�
e��q2

z
V��q; z� � 0; (15)

where � � 0 (� � cz2) in the hard wall (soft wall).
In the hard-wall case, normalizable boundary condi-

tions at z � 0 determine that the solutions are Bessel

functions: V��q; z� � zJ1�mz�, where m2 � �q2. Apply-
ing Neumann boundary conditions at the cutoff z � z0, one
finds only a discrete set of eigenmodes corresponding to
discrete choices of q which satisfy J0�miz0� � 0. The first
zero of J0�x� occurs at x � 2:405 . . . , implying the lightest
� meson has a mass m1 � 2:405=z0. Experimentally, the
lightest � meson has m1 � 776 MeV. Thus, we conclude
that z0 � 1=�323 MeV�.

We now can make a prediction for the deconfinement
temperature in this hard-wall model:

 Tc � 21=4=��z0� � 0:1574m� � 122 MeV; (16)

a low number compared to new lattice estimates [19,20].
In the soft-wall model, the relevant solution to this

differential Eq. (15) involves Laguerre polynomials:
V��q; z� � z2L1

n�cz2� where the allowed values of q are
�q2 � 4nc (n 2 Z�). Matching to the lightest � meson,
we find

���
c
p
� 388 MeV. Our prediction for the deconfine-

ment temperature in the soft-wall model is thus

 Tc � 0:4917
���
c
p
� 0:2459m� � 191 MeV; (17)

which is a current lattice prediction [19]. Because phase
transitions are sensitive to the density of states, perhaps the
more realistic meson spectrum of the soft-wall model is
related to this improved prediction.

IV. DISCUSSION

The stability of thermal AdS at low T and the presence
of a first order phase transition in these soft and hard-wall
models of QCD is consistent with large Nc field theory
expectations. Recall that at large Nc, the confining low
temperature phase has O�1� entropy density, discrete me-
son and glueball spectra, and vanishing expectation value
for the Polyakov loop (a time like Wilson loop). The
deconfined, high temperature phase has O�N2

c� entropy
density, temperature dependent spectral densities, and a
nonzero expectation value for the Polyakov loop.

From these properties, it follows that in the soft wall, the
black hole configuration cannot be stable for all T. The soft
wall is intended to be a model of QCD which experiences a
phase transition at Tc > 0, but the presence of a horizon at
T � 0 indicates that Tc � 0. In the gravity dual, the hori-
zon introduces O�N2

c� degrees of freedom. Mesons [11]
and glueballs in this soft-wall model correspond to discrete
cavity modes, but the horizon leads to loss of probability
density into the black hole and smears out the spectrum.
Moreover, with a horizon, there is no topological reason for
the Polyakov loop to vanish [4]. In the hard-wall model, the
sharp cutoff at z � z0 can completely hide the horizon and
the preceding horizon dependent arguments fail. However,
even if the cutoff at z0 < zh completely cloaks the horizon,
the metric far from the horizon is still different in the black
hole background and leads to spatial Wilson loops and a
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mass spectrum for mesons and glueballs inconsistent with
our large Nc expectations, as we now argue.

In the confined phase, a spatial Wilson loop W has an
expectation value that to leading order in 1=Nc is T inde-
pendent. From the field theory perspective, W produces a
sheet of flux that sits at a point in the compactified time
direction. Temperature dependence can only come from
fluctuations that are large compared to 1=T, wrap around
the compactified time direction, and lead to self intersec-
tions of the flux sheet. These self intersections are sup-
pressed by 1=Nc. From the gravitational perspective, W
corresponds to a Euclidean string world sheet that droops
from the boundary of AdS toward the center. The area law
comes from the fact that for a large enough boundary, most
of the string world sheet lies along the cutoff. If the black
hole configuration were always stable, even though the
horizon is hidden behind the cutoff, the string would
experience T dependent curvature corrections that alter
its effective tension. Instead, since thermal AdS is thermo-
dynamically preferred, the expectation value will be T
independent.

Next, consider the mesons and glueballs which in these
AdS/QCD models correspond to cavity modes [9–11,25].
Again, if the black hole solution were always stable, even if
the event horizon were effectively hidden by the cutoff, T
dependent curvature corrections would appear in the mass
spectrum. Such corrections are not expected from the point
of view of large Nc field theory. In the confining phase, the
interaction cross sections of mesons and glueballs are 1=Nc
suppressed. From chiral perturbation theory, for example,
Ref. [26] demonstrated that T dependent corrections to
meson masses involve diagrams with at least two pions
in the intermediate channel. Since the decay width to pions
is already 1=Nc suppressed, the mass corrections must be
as well. More formally, we could integrate out the fermions
from our theory and reexpress the mass corrections for
mesons in terms of sums of nonlocal operators, for ex-
ample, the spatial Wilson loops discussed above which
have 1=Nc suppressed T corrections [27].

In conclusion, we emphasize that the formation of a
black hole in these AdS/QCD models does not happen at
T � 0, but is instead dual to a first order deconfinement
phase transition at a finite temperature Tc > 0. A black
hole at T � 0 would lead to O�N2

c� entropy density, a
nonvanishing Polyakov loop, leading order in 1=Nc tem-
perature corrections to spatial Wilson loops, and other
effects inconsistent with our expectations for the confining
phase of a large Nc gauge theory.
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