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When unequal-mass black holes merge, the final black hole receives a kick due to the asymmetric loss
of linear momentum in the gravitational radiation emitted during the merger. The magnitude of this kick
has important astrophysical consequences. Recent breakthroughs in numerical relativity allow us to
perform the largest parameter study undertaken to date in numerical simulations of binary black-hole
inspirals. We study nonspinning black-hole binaries with mass ratios from q � M1=M2 � 1 to q � 0:25
(� � q=�1� q�2 from 0.25 to 0.16). We accurately calculate the velocity of the kick to within 6%, and
the final spin of the black holes to within 2%. A maximum kick of 175:2� 11 km s�1 is achieved for
� � 0:195� 0:005.
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Introduction.—Anisotropic emission of gravitational
waves from the coalescence of black-hole binaries carries
away linear momentum and thus imparts a recoil on the
merged hole. This recoil, often referred to as a ‘‘kick’’ or
‘‘rocket effect,’’ has important consequences for various
astrophysical scenarios. The displacement or ejection of
black holes as a result of a black-hole merger not only leads
to a population of interstellar and intergalactic massive
black holes, but also has severe repercussions on the for-
mation of supermassive black holes and the structure of the
host galaxies [1–6]. The demography of massive black
holes is also relevant for the expected number of sources
for the space-based gravitational-wave detector LISA. The
gravitational recoil might also manifest itself directly in
astrophysical observations, such as the discovery of bright
quasistellar objects without a host galaxy (see [7–10]) and
the distorted morphology of �-shaped radio sources
[2,3,11]. Accurate recoil estimates are important for all
of these astrophysical models.

The strongest contribution to the kick is made during the
plunge and merger of the black holes. In this regime non-
linear general relativistic effects preclude reliable analytic
treatment, and even the most recent sophisticated analytic
estimates [12–16], which give a maximum kick varying
from 50 to 500 km s�1, carry uncertainties of 25% to 50%.
Numerical studies using full numerical relativity are nec-
essary to accurately determine the total recoil. In contrast
to analytic calculations, numerical simulations contain
only one physical approximation: the initial data are not
exactly equivalent to an astrophysical inspiral process.
However, the resulting errors decrease as the black holes
are placed further apart. If the initial separation is large
enough that its effect on the estimate of the kick or final
angular momentum is minimal, then the result can be said
to be accurate and free from any physical approximation.

Recent breakthroughs in numerical relativity [17–20]
have made possible long-term stable numerical evolutions
of binary black-hole systems for several orbits through
merger and ringdown [21–27]. Drastic improvements in

computational efficiency achieved by a new generation of
accurate finite-difference mesh-refinement codes, e.g.,
[25,28], pave the way for the large parameter studies
necessary to explore the parameter space of binary black-
hole inspiral. Here we present the first such study, compris-
ing roughly three dozen unequal-mass initial-data sets, to
compute the gravitational recoil and the spin of the final
black hole. Implications for gravitational-wave data analy-
sis will be explored elsewhere.

Early numerical estimates of the recoil suffered from
low numerical accuracy, or initial black-hole separations
that were too small. (Compare, for example, the value of
240� 140 km s�1 for q � 0:5 in [29] and the estimate
33 km s�1 reported in [24] for q � 0:85.) The first accurate
numerical result was recently given by Baker, et al. [30],
who found a value of 101� 15 km s�1 for q � 0:67.

In this Letter we present results from numerical simula-
tions of unequal-mass nonspinning black-hole binaries
with mass ratios q � 1:0 to q � 0:253. We estimate that
the total error in the kick velocities that we quote is less
than 6% (see below). We are thus able to improve on the
numerical and physical accuracy achieved in [30], and,
more importantly, our numerical simulations for the first
time cover a range of mass ratios large enough to accu-
rately determine the maximum kick resulting from non-
spinning binaries. We calculate the maximum kick to be
175:2� 11 km s�1.

Numerical methods.—Numerical simulations were per-
formed with the BAM code [20,28], in which we have
implemented the ‘‘moving puncture’’ method of evolving
black-hole binaries [18,19,31]. This approach is based on
initial data of puncture type [32,33], which are evolved
using the BSSN=�3� 1� formulation of the Einstein equa-
tions [34,35], with a suitable gauge choice. The code uses a
box-based mesh-refinement grid structure with coarser
refinement levels being centered on the origin and the
high resolution levels consisting of two components cen-
tered around each hole and following their motion across
the computational domain. The evolution uses a fourth-
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order accurate Runge-Kutta integrator, and Berger-Oliger
time stepping for the mesh refinement. Gravitational waves
are extracted in the form of the Newman-Penrose scalar �4

on spheres of constant coordinate radius. Details of all
aspects of the implementation have been presented in [28].

To determine the physical parameters of the initial data,
we estimate the initial momenta of the black holes using
the 3PN-accurate formula given in Sec. VII in [28], for
given masses and coordinate separation. The black holes
have masses M1 and M2, and the total black-hole mass is
M � M1 �M2. The total gravitational energy of the sys-
tem is MADM [36]. In the notation of [28], we use the ���2

method, and label our runs by the number of grid points i
on the finest level. We have observed that grid sizes of at
least i � 48 are required to achieve fourth-order conver-
gence in the waveforms and puncture trajectories. Here we
have performed runs with i � 32, 40, 48, 56 for all mass
ratios, corresponding to finest resolutions of 1=26, 1=32,
1=38, and 1=45 (for details see Table I in [28]). The main
purpose of the low resolution runs was to develop and test
our strategy for setting up our simulations. To confirm that
our i � 56 runs are in the fourth-order convergent regime
for the waveforms and puncture tracks, we have performed
convergence tests using resolutions characterized by i �
56, 64, 72, 80 (with resolutions at the punctures of 1=45,
1=51, 1=58, and 1=64) for selected mass ratios. We start
with a simulation of an equal-mass binary, that is, each
black hole has an initial mass of M1 � M2 � 0:5. The
mass ratio is then changed by increasing the mass of one
of the holes. For example, the black holes have masses
M1 � 0:5 and M2 � 1:0 in the case of a mass-ratio q �
M1=M2 � 0:5. The idea behind this strategy is to keep
constant the effective numerical resolution of the small
black hole, while increasing that for the larger hole. For
consistency, it is then necessary to proportionately increase
the initial distance between the black holes, the distance
of the outer boundary of the numerical grid, and the
extraction radii of the gravitational waves. We find that
sufficiently accurate (for the purpose of this study)
gravitational-wave signals could be extracted at 30M.
Finally, the radiated linear momentum is calculated from
�4 according to
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where ‘i � �sin� cos�; sin� sin�; cos�� [30,37].
The puncture initial data with Bowen-York extrinsic

curvature used in our simulations are known to contain
spurious gravitational radiation. This pulse quickly leaves
the system, but carries away linear momentum which we
find to be in the direction transverse to the black-hole
motion. This small initial kick of the order of 10 km s�1

is not part of the astrophysical black-hole recoil we wish to
measure. We therefore wait for the initial pulse to pass

through the extraction sphere (after about 50MADM in our
simulations), and calculate Pi by starting the integration of
dPi=dt as given in Eq. (1) at t0 � 50MADM. In the course
of the inspiral, dPi=dt oscillates around zero, and, thus, the
final integrated kick Pi will depend on the choice of t0. For
the separations we consider ambiguities in this choice
introduce an uncertainty in Pi of 3%.

Results.—We performed two sets of runs. In the first set,
the mass ratio was varied from q � 1:0 to q � 0:25, and
the initial coordinate separation of the black holes was kept
fixed at r0 � 7:0M. Convergence tests were performed for
mass ratios q � 0:4, 0.33, 0.286 with finest-grid resolu-
tions of h1 � 1=45, h2 � 1=51, and h3 � 1=58. To test the
convergence properties of the recoil, we study the compo-
nents Px and Py of the final kick. We find the results to be
consistent with second-order convergence, as shown for
q � 0:33 in Fig. 1. The kick is calculated by integrating
twice in time a function that is several orders of magnitude
smaller than the wave signal �4�2; 2�, and we believe this
to be the reason for the lower-order accuracy than observed
in [28]. Higher resolutions, currently beyond our computa-
tional resources, are necessary to achieve the limiting
overall convergence behavior of the code for all quantities.
There is a large error in the estimate of the kick’s direction,
but the kick’s magnitude is calculated with high accuracy.
We estimate that the total kicks are calculated with a
numerical error of less than 2%.

From Fig. 1 we see that vx � Px=MF and vy � Py=MF,
where MF is the mass of the final black hole, oscillate
around zero during the inspiral. This is consistent with a
small continuous loss of linear momentum, like water from
a spinning lawn sprinkler, which pushes the center-of-mass
in a roughly circular motion, before the final kick during
merger.
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FIG. 1 (color online). Components vx and vy of the kick
velocity as function of time, for � � 0:19, for resolutions h1 �
1=45, h2 � 1=51, and h3 � 1=58. Top panels: kick components
vx and vy. Lower panels: demonstration of second-order con-
vergence.
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For the second set of runs we fix � � 0:19, but vary the
initial separations, setting r0 � 6:0M, 7:0M, and 8:0M.
These simulations demonstrate the extra contribution to
the kick at larger r0 to be small, so that we estimate the
accumulated kick from the early inspiral to be less than
1%. This is comparable to post-Newtonian estimates of the
contribution to the kick up to our initial separation [13].

Figure 2 shows the total kick from all of these runs, as a
function of �. Combining all the errors we have discussed
(3% due to the choice of t0 in Eq. (1), 2% numerical error,
and 1% due to the neglected contribution from earlier
inspiral), we conservatively estimate a total error of less
than 6%. A least-squares fit of the kick with v �
A�2

���������������
1� 4�
p

�1� B�� (based on the formula of Fitchett
[38]) gives A � 1:20� 104 and B � �0:93 with �2 �
48:25 with � � 29 degrees of freedom. From our curve
fit we calculate a maximum kick of Vmax � 175:2�
11 km s�1 at � � 0:195� 0:005 (q � 0:36� 0:03). This
agrees with the estimate of 114� 65 km s�1 of [14], and
also the close-limit analyses in [15,16]. The higher esti-
mate of 250� 50 km=s reported in Ref. [13] does not
include a possible ‘‘breaking’’ effect in the ringdown
phase, and their values agree well with the local maximum
in Fig. 3.

Finally, we address the spin of the merged black hole.
An understanding of the demographics of black holes, in
particular the expected values of spins, is of essential
importance for astrophysics, and also for developing ap-
proaches to explore the astrophysically relevant binary
black-hole inspiral parameter space. We have computed
the initial angular momentum from surface integrals at the
wave extraction sphere as described in [28], and the final
angular momentum from computing the wave ringdown

frequency from an amplitude-phase decomposition of the
radiation signal, and comparing with the dependence of
angular momentum of a Kerr black hole on the ringdown
frequency as quoted in [39]. An error estimate is obtained
from evaluating the angular momentum surface integrals at
the extraction sphere at the end of the simulation. We thus
find our results to be accurate to within about 2%. Our
results for the unequal-mass sequence considered here are
displayed in Fig. 4. In the regime we consider, the depen-
dence of the final spin on the mass ratio is approximately
linear when expressed as a function of �: a=Mf �

0:089��0:003� � 2:4��0:025�� (the correct result for
� � 0 corresponds to a � 0).

Discussion.—Our results constitute the first accurate
numerical calculations of the recoil velocity from the
merger of nonspinning black holes for a large range of
mass ratios, q � 1:0 to 0.253. This range allows us to
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determine the maximum kick as Vmax � 175:2�
11 km s�1 at a mass ratio of q � 0:36� 0:03. Theo-
retical estimates predict a maximum kick at q � 0:38,
and agree well with our value. Our maximum kick velocity
is within the error bounds of the analytic estimates of
Damour and Gopakumar [14] and Sopuerta, et al. [15],
which have significantly refined an earlier estimate
by Favata et al. [12]. The kick before ringdown agrees
well with the results in [13]. We also find consistency with
the numerically calculated value 105� 10 km s�1 for q �
0:67 in [30].

The results presented here required the largest parameter
study of numerical binary black-hole evolutions to date,
comprising approximately three dozen data sets describing
unequal-mass nonspinning inspiraling black holes. The
efficiency of our code [28] has enabled us to perform all
the simulations quoted here at a total computational cost
(including the development of our strategy and setup,
production runs, and convergence tests) of about 150 000
CPU hours.

In future work we plan to study the consequences of our
results for gravitational-wave data analysis. Extending this
work to much higher mass ratios would require larger
evolution times and higher resolutions, making such simu-
lations computationally very expensive, but in principle
possible with our current techniques. The situation is simi-
lar if we wish to consider larger initial separations.
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Murchadha, gr-qc/0606099.
[32] J. M. Bowen and J. W. York, Phys. Rev. D 21, 2047 (1980).
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