
Optimal Quantum Circuits for General Phase Estimation

Wim van Dam,1 G. Mauro D’Ariano,2 Artur Ekert,3 Chiara Macchiavello,2 and Michele Mosca4

1Departments of Computer Science and Physics, University of California, Santa Barbara,
Santa Barbara, California 93106-5110, USA

2Dipartimento di Fisica ‘‘A. Volta" and CNISM, via Bassi 6, 27100 Pavia, Italy
3Mathematical Institute, University of Oxford, 24-29 St. Giles’, Oxford, OX1 3LB, United Kingdom,
and Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542

4Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada,
St. Jerome’s University, N2L 3G3, Waterloo, ON, Canada,

and Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, ON, Canada
(Received 24 September 2006; published 1 March 2007)

We address the problem of estimating the phase � given N copies of the phase-rotation gate u�. We
consider, for the first time, the optimization of the general case where the circuit consists of an arbitrary
input state, followed by any arrangement of the N phase rotations interspersed with arbitrary quantum
operations, and ending with a general measurement. Using the polynomial method, we show that, in all
cases where the measure of quality of the estimate ~� for � depends only on the difference ~���, the
optimal scheme has a very simple fixed form. This implies that an optimal general phase estimation
procedure can be found by just optimizing the amplitudes of the initial state.
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The possibility of encoding information into the relative
phase of quantum systems is often exploited in quantum
information processing tasks and several kinds of applica-
tions (e.g., [1,2]). Moreover, information is encoded into
phase properties in some quantum cryptographic protocols
[3] and in some precision measurements, such as the
schemes on which atomic clocks are based [4]. There-
fore, the issue of estimating the phase in the most efficient
way is of great interest.

We phrase the phase estimation problem as follows. Let
u� be a single qubit gate that in a prescribed ‘‘computa-
tional’’ basis fj0i; j1ig maps the state j0i to j0i and j1i to
ei�j1i. We assume that we have no prior knowledge about
�. The objective is to estimate � using some procedure
that will output some guess ~�. We characterize the quality
of an estimate by a ‘‘cost function’’ C��; ~��, which speci-
fies the penalty associated with guessing ~�when the actual
phase is �. We are given N identical single qubit quantum
gates u�, and the goal is to use these gates along with any
other operations in order to produce an estimate of �. The
optimal procedure is the one that has the minimum ex-
pected cost.

Most of the previous work on phase estimation assumes
some fixed state encoding the phases, and the only thing to
be optimized is the final general measurement [i.e., a
measurement based on a positive-operator-valued measure
(POVM)] [5–7]. More recent work [8] fixes the way the
phase gates are applied and optimizes the choice of input
state and final POVM or achieves optimal bounds for
specific cost functions (e.g., [9] or [10], which is based
on the Cramer-Rao bound).

The crucial point is that in this Letter we are not re-
stricted to preparing some input state, then applying all of

the phase rotations, and then performing an optimal
POVM. We consider the case where one has full freedom
over how to use the phase-rotation gates in an experiment
designed to optimally estimate the phase. Any realistic
experiment of this type can be viewed as computation,
completely specified by a quantum circuit acting on
some finite number of qubits and involving, apart from
the N copies of the u� gates, some finite number of
arbitrary quantum gates of our choice. In fact, many quan-
tum algorithms, including Shor’s quantum algorithm for
factoring integers, can be phrased in terms of such phase
estimations [1,2]. This originally provided the motivation
for this work.

We assume that the phase � is chosen uniformly from
�0; 2�� [11] and that a suitable quantum circuit containing
N copies of the u� gates outputs some value y with
probability Pr�yj��. From y we infer, following a pre-
scribed rule, the estimate ~�y. The quality of the whole
procedure is quantified by the expected cost �C, given by

 

�C �
1

2

X
y

Z 2�

��0
d� Pr�yj��C��; ~�y�: (1)

The next part of this Letter describes a very simple
procedure for estimating � that only requires one to opti-
mize the choice of initial state to an otherwise fixed pro-
cedure. The rest of the Letter then reduces the very general
case we have described above to this very simple case.

For a given cost function, the quality of an estimation
procedure depends on both Pr�yj�� and the inference rule
y � ~�y. The optimal protocol gives the minimum possible
average �C. We restrict attention to cost functions C that
depend only on �� ~�y and, therefore, adopt the notation
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C��; ~�y� � C��� ~�y�. We will make only the following
very weak assumption on the cost function (which corre-
sponds to a more general class of cost functions than the
‘‘Holevo’’ class that is typically considered [12]):

 

Z 2�

��0
d�jC���j<1: (2)

We will deal with specific cost functions later.
Let us start by describing a simple and natural approach

for estimating the phase �, illustrated in Fig. 1.
Procedure 1.—(a) Prepare m qubits in state jxi �PN
j�0 �jjji, with N � 2m � 1. The exact values of �j

depend on the cost function to be maximized. (b) Apply
the u� gates to effect U�

 U�

XN
j�0

�jjji �
XN
j�0

�jeij�jji: (3)

(c) Apply the inverse quantum Fourier transform to obtain

 2�m=2
X2m�1

y�0

�XN
j�0

�jeij����2�y=2m��

�
jyi; (4)

measure y, and calculate the estimate ~�y � 2�y=2m.
The surprising claim is the following. Given any func-

tion C satisfying Eq. (2), the minimum of �C obtained by
optimizing the �j in procedure 1 is the infimum of all
values obtainable by any realistic experiment (as we de-
scribed above and illustrate in Fig. 2). It is important to also
note that, apart from the preparation of the initial state, the
above procedure can be implemented using the N black
boxes u� and a number of elementary gates polynomial in
log�N�. Efficient preparation of states is discussed in
Ref. [13]. Exact implementation of quantum Fourier trans-
forms is discussed in Ref. [14], and arbitrarily good ap-
proximations are discussed in Refs. [1,15]. How to
generalize the circuit in Fig. 1 to work for any positive
integer N is shown in Ref. [8].

The remainder of this Letter will prove this claim by a
sequence of reductions.

Let us start with a very general circuit (Fig. 2) which
uses m� d qubits, where m and d can be arbitrarily large.
The first m qubits are measured after the computation,
yielding the output 0 � y � 2m � 1, whereas the remain-
ing d qubits are discarded.

Since we are allowing arbitrarily many extra ‘‘ancilla’’
qubits, and since any classical feedback scheme can, in
principle, be implemented by a unitary operation using a
sufficiently large ancilla, the family of schemes that can be
implemented by a quantum circuit of this form includes
any scheme using finite dimensional state spaces.

For convenience, we let the output y correspond to the
phase estimate ��y �

2�y
M , for some M � 2m. Without loss

of generality [16], we can assume M � N � 1, which is
necessary for this reduction. For a fixed approximation
scheme (using finite means) and cost function satisfying
Eq. (2), and assuming a uniform prior distribution of the�,
this simplifying assumption will give us a scheme with an
expected cost that is at most �C� �M, where �M ! 0 as
M ! 1, and �C is the lowest expected cost for any possible
scheme. Thus, the infimum of the �C over all such restricted
schemes equals the infimum of the �C over all possible such
schemes.

In fact, we will also show later that assuming the infer-
ence rule has this special form does not cost us anything.
That is, the infimum of the expected costs of all of the
schemes using the inference rule y � 2�y

M for any M �
N � 1 is the infimum of the possible expected costs using
any inference rule y � ~�y.

Suppose we came up with a general circuit that performs
an estimation of � according to some prescribed set of
criteria. Let us first show that such a circuit is equivalent,
for our purposes, to another one, which has a much simpler
structure.

The state at the output of the circuit can be written as

 

XM�1

y�0

X2d�1

z�0

��y; z;��jyijzi; (5)

where each amplitude ��y; z;�� is a polynomial in ei� of
degree at most N:

 ��y; z; �� �
XN
j�0

�j�y; z������
M
p eij�: (6)

This fact follows by an induction proof just as in Ref. [17],
where the polynomial method is applied to an oracle
revealing one of many Boolean variables. The coefficients
can be expressed as polynomials in ei�, initially of de-

 

FIG. 1. A simple approach for estimating � in the case that
N � 7. Optimizing over the input amplitudes �j produces an
optimal estimate of �.

 

FIG. 2. The most general approach for estimating the unknown
phase rotation. This subsumes procedure 1, as well as more
complicated procedures with classical feedback.
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gree 0. Every application of u� increases the degree by at
most 1. Any intermediate unitaries transform the coeffi-
cients linearly and, thus, do not increase the degree.

Since we assume that the cost function is of the form
C��; ~�y� � C��� ~�y�, then by an argument [18] similar
to the Hunt-Stein theorem [12] the optimal conditional
probability

 Pr�yj�� �
X
z

j��y; z; ��j2 (7)

can without loss of generality be assumed to depend only
on the difference �� 2�y

M and, therefore, equals

 Pr�0j�� 2�y=M� �
X
z

j��0; z; �� 2�y=M�j2: (8)

To simplify the notation, we let �j�z� � �j�0; z�.
Therefore, a circuit that produces amplitudes

 j��y; z; ��j �
��������X

N

j�0

�j�z�e
ij����2�y=M��

��������1=
�����
M
p

(9)

also leads to the optimal estimation of�. Thus, the follow-
ing simple estimation procedure, whose circuit is illus-
trated in Fig. 3, performs equally well: (a) Prepare m� d
qubits in state jxi �

P2d�1
z�0

PN
j�0 �j�z�jjijzi. For this

preparation to be possible, m has to be chosen such that
N < 2m. (b) Apply the u� gates to effect U� on the first m
qubits

 U�

X2d�1

z�0

XN
j�0

�j�z�jjijzi �
X2d�1

z�0

XN
j�0

�j�z�e
ij�jjijzi: (10)

(c) Apply the inverse quantum Fourier transform [19]
jji� �1=

�����
M
p
�
PM�1
y�0 e

�i�2�yj=M�jyi, to obtain

 

1�����
M
p

X2d�1

z�0

XM�1

y�0

�XN
j�0

�j�z�e
ij����2�y=M��

�
jyijzi; (11)

and measure y.
The following two observations lead to further

simplifications.
Let us first notice that in this procedure the role of the d

auxiliary qubits is restricted to the initial preparation of the
most general state of the first m qubits (all subsequent
operations are restricted to these m qubits). The expected
cost for a mixture cannot be less than all of the individual
expected costs for the contributing pure states; hence,
either some of the contributing costs are less or they are
all equal. In either case, a judicious choice of a pure state of
the m qubits leads to equally good or better phase estima-
tion. This argument implies that, without loss of generality,
we can drop the d ancilla qubits, restrict our circuit to only
m qubits (plus some ancilla bits that might be used to
implement U� using N copies of u�), and run the estima-
tion on pure states.

Second, in the description above the quantum Fourier
transform is parametrized by M, where N � 1 � M � 2m,
but in fact any M0 � N � 1, for example M0 � 2m, will
work equally well, while keeping the same �j�z� values
(we can drop the dependence on z, as shown in the previous
paragraph) that were defined in Eq. (6) for a specific value
of M. To see this, consider a cost function of the form
C��� ~�y�. The expected cost, for some M0, is

 

�C�
1

2�M0
Z 2�

��0
d�

XM0�1

y�0

��������X
N

j�0

�jeij���2�y=M0�

��������2

	C
�
��

2�y
M0

�

�
1

2�M0
XM0�1

y�0

Z 2�

�0�0
d�0

��������X
N

j�0

�je
ij�0

��������2
C��0�

�
1

2�

Z 2�

�0�0
d�0

��������X
N

j�0

�je
ij�0

��������2
C��0�;

where �0 � �� 2�y
M0 . The expected cost does not depend

on M0. In other words, for any M;M0 � N � 1, any ex-
pected cost achievable with inference rule y � 2�y

M is also
achievable with inference rule y � 2�y

M0 .
Recall that we mentioned in the introduction that as

M ! 1 the difference between the optimal �C assuming
the inference rule y � ��y �

2�y
M and the optimal �Cwithout

such an assumption is �M ! 0. Since we have just shown
that for all M � N � 1, the expected cost �C is constant,
this means that the difference �M is in fact 0 for all M �
N � 1. In other words, assuming a inference rule of the
form ~�y �

2�y
M does not cost us anything as long as we use

M � N � 1.

 

FIG. 3. Without loss of generality, we can assume that our
phase estimation procedure has the form illustrated in this figure,
where 2m � M � N � 1. The top register contains m qubits, and
the bottom d qubits are ancilla qubits that may be entangled with
the first m qubits but are discarded.
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It is clear that the exact value of the expected cost now
depends only on the �j values, that is, on the initial state,
which means that, given a specific cost function, all we
have to do is to choose an optimal initial state.

We emphasize that the schemes in Figs. 1 and 2 provide
an optimal covariant estimation scheme even for general
cost functions not necessarily of the Holevo class.

Let us now address the problem of optimal input states
for two different cost functions. First, we look at the mini-
mization of the ‘‘1�fidelity’’ cost function CF��; ~�y� �

sin2���� ~�y�=2
. The minimum cost is achieved with the
initial state

 jxoptimal
N i �

XN
j�0

�������������
2

N � 2

s
sin
�
�j� 1��
N � 2

�
jji: (12)

The error in fidelity of this protocol goes to zero according
to the square of the number of black boxes used �CF �
O�1=N2�. It is interesting to note that the fidelity of the
more conventional approach to phase-rotation estimation
with the uniform initial state (�j � 1=

�������������
N � 1
p

for all j)
only tends to zero linearly in N. That is, �CF � ��1=N�.

Another cost function that is commonly used is the
window function that allows any error smaller than �:
C�W��; ~�� � 0 if j�� ~�j< �, but C�W��; ~�� � 1 if
j�� ~�j � �. The minimization of this cost leads to opti-
mal states with amplitudes �j � 1=

�������������
N � 1
p

, which corre-
sponds to what is effectively used by Shor’s algorithm
[1,2,20], and provides an expected cost in O� 1

�N�.
In this Letter, we have addressed the general problem of

finding the optimal estimating procedure for the real pa-
rameter � given N copies of the single qubit phase rotation
u� within a general quantum circuit in finite dimensions.
We considered the general case where the circuit consists
of an arbitrary input state followed by any arrangement of
the N phase rotations interspersed with arbitrary quantum
operations. The main result was the proof that in all cases,
and for any covariant cost function, the optimal phase
estimation procedure is equivalent to a quantum Fourier
transform in an appropriate basis.

Our result is very general and gives a recipe for finding
the best achievable phase estimation for a given cost func-
tion. In practice, once we know the minimum cost possible,
we can also search for and use easier-to-implement phase
estimation procedures that achieve the same, or similar,
expected cost. Because of the generality of our main result,
it will surely find many other interesting applications in
physical and computational scenarios.

This is an application of the polynomial method to
‘‘black boxes’’ encoding continuous variables, in this
case, one real parameter. The method can also be applied
to several real parameters, as well as combinations of
continuous and discrete parameters.
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