
Universality in a 2-Component Fermi System at Finite Temperature

Gautam Rupak
Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA

(Received 23 May 2006; published 2 March 2007)

Thermodynamic properties of a Fermi system close to the unitarity limit, where the 2-body scattering
length a approaches �1, are studied in the high temperature Boltzmann regime. For dilute systems the
virial expansion coefficients in the Boltzmann regime are expected, from general arguments, to be
universal. A model independent finite temperature T calculation of the third virial coefficient b3�T� is
presented. At the unitarity limit, b13 � 1:11 is a universal number. The energy density up to the third virial
expansion is derived. These calculations are of interest in dilute neutron matter and could be tested in
current atomic experiments on dilute Fermi gases near the Feshbach resonance.
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Recent experiments in atomic traps near the Feshbach
resonance [1–5] have opened opportunities to study prop-
erties of finite density systems that have not been explored
before. Using an external magnetic field, it is possible to
tune the 2-body S-wave scattering length a essentially at
will: it can be made arbitrarily large (a � �1) compared
to the range of the interaction R. Several groups have taken
measurements near the Feshbach resonance in 6Li and
40Ka fermionic atomic gases [1–5]. These experiments
are important checks of theoretical tools, both new and
old, in previously untested territories and hold the prospect
of revealing many new phenomenon.

At densities n that are dilute compared to the range of
the interactions (nR3 � 1), the physics should be insensi-
tive to the details of the interaction at the short distance
scale R. Therefore, near the Feshbach resonance, as jaj !
1, where there are no relevant scales left in the interaction,
thermodynamic properties are expected to be universal and
not just applicable to only atomic systems. Many physical
systems in nature are close to this universal limit. In 4He
atomic gases, the scattering length a� 100 �A is much
larger than the range of the interaction R� 5 �A. In nuclear
physics, the neutron-neutron S-wave scattering length
ann ��19 fm is much larger than the range of the inter-
action set by the pion mass R� @=m� � 1:4 fm. The
universal properties learned in atomic experiments are
applicable to other problems in the same universality class
that are otherwise not directly accessible such as neutrino
interactions in dilute neutron matter in supernova [6].

In this Letter, we study the properties of spin- 1
2 non-

relativistic fermions with large scattering length jaj ! 1
at density n� 1=R3 and temperature T such that the
thermal wavelength � �

��������������������
2�=�MT�

p
	 R, and we are

not sensitive to the short distance scale R. Standard low-
density expansion method is not feasible due to the large
factors of jaj3n	 1. However, in a window of tempera-
tures T such that n�3 � 1 and �	 R, a perturbative
calculation in n�3 � 1, the Boltzmann regime, is possible
even as jaj3n! 1, jaj=�!1. The hierarchy of momen-
tum scales is jaj 	 n�1=3 	 �	 R.

In the Boltzmann regime the pressure P of a
2-component Fermi gas can be written in terms of the so-
called virial expansion [7]:

 

P
T
�

2

�3 
b1z� b2z
2 � b3z

3 � . . .�; (1)

where z � exp��=T� is the fugacity for the system with
chemical potential �. In this expansion, all the density
dependence is in the fugacity z. This is a valid expansion
for z� 1 or equivalently for n�3 � 1 as shown later in
Eq. (10).

The dimensionless virial coefficients bn depend on the
vacuum interaction and the thermal momentum

��������
MT
p

. For
a dilute system with thermal wavelength �	 R, the inter-
action primarily depends on the scattering length a. Thus,
as a! �1 at the unitarity limit, there are no relevant
scales left in the interaction and the dimensionless coef-
ficients bn must be universal. This is shown explicitly with
a calculation up to the third order in the virial expansion.
Small corrections to these universal results from effective
range, higher-partial waves, etc., are neglected.

The virial coefficient bn receives contribution from up to
and including n-body physics [7,8]. b2 is the first coeffi-
cient that receives contribution from the interacting theory
and it is related to the 2-body scattering phase shift [7–9]:

 b�2�2 �
1���
2
p e�

2=MT
�

1� Erf
�
���������
MT
p

��
; (2)

where Erf�x� is the error function and � � 1=a. We use the
notation bn � b�1�n � b

�2�
n � . . .� b�n�n , where b�l�n is the nth

virial coefficient from l-body interaction. The thermody-
namic pressure P�l�k , number density n�l�k , etc., are also
denoted in a similar manner. P�l� and n�l� without a sub-
script denote the total contribution to the pressure and
number density from l-body physics. As jaj ! 1, b�2�2 �

1=
���
2
p

is universal. b�2�2 and T@Tb
�2�
2 are plotted in Fig. 1

near the unitarity limit using the atomic lithium 6Li mass
M, at temperatures around 6 �K.

Traditionally the higher virial coefficients are calculated
in a cluster expansion with the ‘‘binary collision’’ method
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of Lee and Yang (see Ref. [10] ) but it is not applicable near
the unitarity limit with a real or virtual shallow bound state.
The third virial coefficient has been calculated for bosons
only in very limiting cases [10]. However, it is not clear
how the contribution from 3-body bound states associated
with the Efimov effect [11] in bosons such as 4He near
jaj ! 1 is taken into account. In contrast, the effective
field theory calculation takes the 4He 3-body bound state
contribution into account directly [8].

The nonrelativistic system near the Feshbach resonance
in the S-wave can be described by the Lagrangian density:

 L �  y
�
i@0 �

r2

2M
��

�
 �

g
4
� �2 �y� �2 � � . . . ;

(3)

where the ‘‘. . .’’ represents higher dimensional operators
that are suppressed for dilute systems,  are the spin- 1

2
fermion fields, and the �i matrices act in the spin space.
The four-fermion coupling g is related to the 2-body
scattering length a (see Refs. [12,13] and references
therein): g��� � �4�=
M��� 1=a��, where � is the re-
normalization scale in dimensional regularization.

For bosons, there is a 3-body interaction at leading order
[13,14] related to the 3-body bound state that dominates
the third virial coefficient b3 [8]. At the same time this
prevents b3 from being universal for bosons since the 3-
body binding energy is system dependent and does not
necessarily approach a universal value as a! �1. The
differences between ideal quantum Fermi Eq. (4) and Bose
[15] gases become even more significant in the interacting
systems.

The first two virial coefficients b1 and b2 are known.
Nevertheless, it is instructive to derive them in the effective
field theory before calculating the third virial coefficient

b3. Feynman diagrams with a closed particle loop are order
z (from the energy integral over the Matsubara frequency)
and vanish in vacuum as expected. This can be seen by
calculating the pressure in the free theory, Fig. 2:
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X1
l��1

Z d3q

�2��3
log

�
i�2l� 1��T ���

q2
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�

�
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�
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z3

9
���
3
p �� . . .

�
; (4)

resulting in an ideal Fermi gas ‘‘effective’’ pressure P=n �
T
1� n�3=�8

���
2
p
� �   � which is larger than the classical

ideal gas [15] due to Pauli’s exclusion principle. The
classical ideal gas law P=n � T is recovered as T ! 1.
A closed particle-particle diagram (only possible with
interactions) is O�1� and does not vanish in the vacuum.
However, a closed loop with ‘‘baryon number’’ 2, i.e., a
closed dimer propagator, is O�z2�. Similarly, a closed
trimer propagator is O�z3�. This is more easily demon-
strated with the calculation of b2.

The 2-body scattering is nonperturbative for jaj * �,
and the dimer propagator is given by an infinite sum, Fig. 2:

 D �p0; ~p� �
4�
M

1

� 1
a�

��������������������������������������
p2

4 �Mp0 � 2M�
q �O�z2�;

(5)

where p � j ~pj, q � j ~qj. p0 is an odd multiple of i�T and it
is identified with a ‘‘final’’ loop integral variable in Eqs. (6)
and (8). The contribution from the dimer propagator to the
pressure is

 P�2� � �T
X1
l��1

Z d3q

�2��3
logfD
i�2l� 1��T; ~q�g

�
1

2�i

I d�
exp��=T� � 1

Z d3q

�2��3
log
D��; ~q��: (6)

The contour integral in � is in an anticlockwise sense over

 

P (1) =

(p0 )

= (p0 )

P (2) = (q0 )

− g− g− g

+= + . . .

FIG. 2 (color online). The pressure P from 1- and 2-body
physics. Solid lines are fermion fields. Each particle-particle
loop is order g

��������
MT
p

� a
��������
MT
p

and summed to all orders to
form the dressed dimer propagator, represented by the double
lines.
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FIG. 1 (color online). Plot of b�2�2 and its derivative �b2 �

T@Tb
�2�
2 for 6Li as a function of the inverse scattering length � �

1=a in eV. 1 eV � 5:06� 10�4 �A�1 in natural units (@ � 1 �
c). Solid, long-dashed, dot-dashed, and short-dashed curves
correspond to temperatures of 6 �K, 8:4 �K, 11:76 �K, and
16:46 �K, respectively.
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odd integer multiples of i�T. Looking at Eqs. (5) and (6),
one can see that the energy integral over� is O�z2� because
a dimer carries chemical potential 2�. This is similar to the
energy � integral for a closed single particle propagator
that carries chemical potential � and 1=
exp��=T� � 1� �
O�z� for ����. An explicit calculation shows:

 P�2� �

���
2
p
T

�3 z2e�
2=MT

�
1� Erf

�
���������
MT
p

��
�O�z4�: (7)

Comparing Eqs. (1), (2), (4), and (7), we see that the known
results up to the second order in the virial expansion are
exactly reproduced in the effective field theory calculation.

The calculation of the third virial coefficient b�3�3 is
similar. First, the leading order trimer propagator in the
fugacity z expansion is calculated, and then the energy
integral over imaginary odd multiples of i�T is carried
out. The trimer propagator is O�1� in the z expansion and
carries chemical potential 3�. Thus an energy integration
over a closed trimer loop is O�z3�. The trimer propagator
requires summation of an infinite series of Feynman dia-
grams for jaj

��������������������
MT=�2��

p
* 1 that do not reduce to a geo-

metric sum unlike the dimer propagator [13,14]. The
relevant Feynman diagrams are shown in Fig. 3. We get:

 P�3�3 � i
6
���
3
p

�2�3 z
3
I
d�

Z 1
0
dk

k2e��=Ta��; k; k�

k2 � 4
3 �M�� �

2�
; (8)

where the contribution from the trimer propagator, after
projecting onto the S wave, is defined through the integral
equations
 

a��; k; p� � K��; k; p� �
2

�

Z 1
0
dl
l2a��; k; l�K��; l; p�

l2 � 4
3 �M�� �

2�
;

K��; k; p� � �
2

3

��
����������������������
3
4 k

2 �M�
q
kp

� log
�
k2 � p2 � kp�M�

k2 � p2 � kp�M�

�
: (9)

In Fig. 4, the third virial coefficient �b3 � b3 � b
�1�
3 �

b�2�3 � b
�3�
3 � b�3�3 and its derivative T@T �b3 are shown for

6Li at temperatures around 6 �K. As expected from physi-
cal arguments presented earlier, the third virial coefficient
is universal as jaj ! 1. We find �b13 � 1:05.

From this calculation, we see that the virial coefficients
up to O�z3� are not unnaturally large [numbers of O�1�]
and for z� 1, the virial expansion seems consistent.
Formally, the expansion in z is equivalent to an expansion
in the diluteness parameter n�3 � 1 in perturbation
[7,16]:
 

n�
@P
@�
�

2

�3 
b1z�2b2z
2�3b3z

3�� . . . ;

) z�
n�3

2
�2b2

�
n�3

2

�
2
��8b2

2�3b3�

�
n�3

2

�
3
� . . . ;

(10)

where we used b1 � 1. Defining the density n in terms of
the Fermi temperature TF, n�3=2 � 4=�3

����
�
p
��TF=T�3=2 is

the small expansion parameter for T 	 TF. The energy
density can be obtained from the pressure using standard
thermodynamic relations � � �P��n� Ts, where s �
@TP is the entropy density.

At unitarity a! �1, we have �1 � �kin � �
1
int with

[16]:
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1
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9
���
3
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��
;

�1int �
3

2
Tn

n�3

2

�
�

1���
2
p �

n�3

2
�1� 2 �b13 �

�
:

(11)

�1int is the contribution from the interacting theory in
Eq. (3).

In Fig. 5, the contributions from the second and third
virial coefficient to the energy density (top graph) and the
ratio �int=�kin (bottom graph) are shown. Conservatively
from the top graph, the range of convergence is deduced to
be TF=T & 0:8, where the second and the third order virial
contributions are of similar size. For experiments on 6Li, at
temperatures around T � 1:5TF we expect the virial ex-
pansion to be valid. At this temperature, the effect of the

 

P
(3)
3 =

= + + · · ·

FIG. 3 (color online). 3-body contribution to the pressure P�3�3 .
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FIG. 4 (color online). Plot of �b3 and its derivative �b3 �
T@T �b3 for 6Li as a function of � � 1=a in eV. The different
curves are for the same set of temperatures as in Fig. 1 and use
the same notations.
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third virial coefficient should be detectable in experimental
data for dilute systems.

In conclusion, we considered a dilute spin- 1
2 Fermi

system near the unitarity limit jaj ! 1. The thermody-
namic pressure was calculated in a model independent way
using effective field theory up to the third order in the virial
expansion. At this order, universality was demonstrated
and a range of temperature T * 1:25TF for a fixed density
(conversely a range of densities for a fixed temperature)
was identified for a self-consistent application of the re-
sults. At lower temperatures, numerical lattice calculations
are more appropriate [17–21]. However, at intermediate
temperatures, our results could be used as checks for the
lattice calculations.

The virial expansion is a useful tool for dilute systems
where the microscopic physics is poorly known or difficult
to calculate. The current work is of interest in atomic and
nuclear physics. For example, at neutrinosphere tempera-
tures T � 5 MeV [22,23] and densities n� 10�3 fm�3 [6],
the nuclear interaction is short ranged R� 1=m� � �,
R� n�1=3 with an expansion parameter n�3 � 0:3. For
neutron matter, factors of jaj=�� 3 have to be treated
nonperturbatively giving b2 � 0:42. Effective range r0

corrections are expected to be important but perturbative
r0=�� 0:3, in agreement with calculation of b2 in Ref. [6].
It might be practical to include effective range corrections
exactly [24,25] by incorporating it in the dimer propagator
in Eq. (5). Then one would be left with small P-wave
corrections R3=�3 � 1=�m���

3 � 0:01. In neutron matter
a��19 fm [25], b3 � 1 and the contribution of the third
virial term to the pressure is estimated to be n2�6 � 0:09,
i.e., �10%.
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