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We develop generalized bounds for quantum single-parameter estimation problems for which the
coupling to the parameter is described by intrinsic multisystem interactions. For a Hamiltonian with
k-system parameter-sensitive terms, the quantum limit scales as 1=Nk, where N is the number of systems.
These quantum limits remain valid when the Hamiltonian is augmented by any parameter-independent
interaction among the systems and when adaptive measurements via parameter-independent coupling to
ancillas are allowed.
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Many problems that lie at the interface between physics
and information science can be addressed using techniques
from parameter estimation theory. Precision metrology,
timekeeping, and communication offer prominent ex-
amples; the parameter of interest might be the strength of
an external field, the evolved phase of a clock, or a com-
munication symbol. Fundamentally, single-parameter esti-
mation is a quantum-mechanical problem: one must infer
the value of a coupling constant � in the Hamiltonian
H� � @�h0 of a probe system by observing the evolution
of the probe due to H� [1–5]. We take � to have units of
frequency, thus making h0 a dimensionless coupling
Hamiltonian.

Quantum mechanics places limits on the precision with
which � can be determined. It is now well established, via
the quantum Cramér-Rao bound [1–4], that the optimal
uncertainty in any single-parameter quantum estimation
procedure is ��� 1=

���
�
p
t�h0, where � is the number of

independent probes used, t is the evolution time of each
probe, and �h0 is the standard deviation (uncertainty) of h0

[3,4]. The 1=
���
�
p

dependence is the standard statistical
improvement with the number of trials; generally, for
non-Gaussian statistics, the sensitivity 1=

���
�
p
t�h0 can

only be attained asymptotically for large �. But besides
increasing the number of trials, there are two other obvious
ways to improve the sensitivity: (i) the probe can be
allowed to evolve under H� for a longer time t; (ii) the
quantum state of the probe can be chosen to maximize the
deviation �h0. In all practical settings, decoherence or
other noise and temporal fluctuations in � limit the useful
interaction time. For a given parameter estimation prob-
lem, h0 is fixed, as is its maximum deviation.

Quantum mechanics does, however, provide another
opportunity: gathering N probe systems into a single
probe, which is prepared in an appropriate entangled state;
if �h0 for the entangled state increases faster than

����
N
p

, the
sensitivity improves, provided there is still a sufficient
number of probes to reach the asymptotic regime in the
number of trials. This Letter focuses on how �� scales with
N, the number of systems in a probe. Thus we work

throughout with bounds on the sensitivity of a single probe,
remembering that the bounds can be achieved only by
averaging over many probes, but preferring not to muddy
the discussion by carrying along the 1=

���
�
p

dependence on
the number of probes.

For the N systems in a probe, it has been traditional to
consider Hamiltonians of the form

 H� � @�h0; h0 �
XN
j�1

hj; (1)

where h0 is the collective dimensionless Hamiltonian that
results from summing over identical single-system cou-
plings hj for the individual probe constituents. Restriction
to Hamiltonians that are separable and invariant under
particle exchange, as in Eq. (1), is physically motivated:
in metrology it is desirable to make the coupling to the
parameter homogeneous, and in many physical implemen-
tations, even the measurements performed on the probe are
unable to distinguish between individual constituent
systems.

To determine how the optimal parameter uncertainty
scales with N, one maximizes the deviation �h0 over joint
states of the probe systems. If entanglement is not allowed,
the probe systems can themselves be regarded as indepen-
dent probes; in this case, �h0 scales as

����
N
p

, producing the
so-called shot-noise limit found in precision magnetome-
try, gravimetry, and timekeeping [6]. When entanglement
is allowed, however, one can choose the initial probe state
to be the ‘‘cat state,’’

 

1���
2
p �j�M; . . . ; �Mi � j�m; . . . ; �mi�; (2)

where for system j, j�Mi (j�mi) is the eigenstate of hj with
maximum (minimum) eigenvalue �M (�m). This yields a
deviation �h0 � N��M � �m�=2 that scales linearly in N
[3,5], a scaling known as the Heisenberg limit. Evolution
under H� for time t introduces a relative phase ei��t� into
the cat state, with ��t� � �tN��M � �m�, and leaves �h0

unchanged; the Heisenberg limit can be attained (asymp-
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totically for many trials) by measuring on each probe
system an observable two of whose eigenvectors are j�i �
�j�Mi � j�mi�=

���
2
p

.
We argue that symmetric linear coupling to collective

probe operators, the assumption that underlies Eq. (1) and
many 1=N scaling derivations based on collective uncer-
tainty relations [6–8], should not be considered fundamen-
tal to metrology. For example, some condensed and even
quantum-optical systems exhibit nonlinear collective ef-
fects due to multibody or tensor-field interactions [9–11].
In such systems, multibody terms in the Hamiltonian can
couple to metrologically relevant parameters. In this Letter
we generalize single-parameter quantum estimation to in-
trinsic many-body interactions and obtain parameter un-
certainty scalings that outperform 1=N. Our work is largely
inspired by a recent paper by Roy and Braunstein [12],
which claimed an exponential scaling for a collection of N
qubits with a particular Hamiltonian. Using our results, we
argue below that their proposed exponential scaling is
unphysical.

We turn now to showing that Hamiltonians with intrinsic
k-body terms generate a family of parameter estimation
problems, characterized by k, where the quantum limit
scales as 1=Nk. For this purpose, we consider
Hamiltonians of the form

 H��t� � @�h0 � ~H�t�; h0 �
X

fj1;...;jkg

h�k�j1;...;jk
; (3)

where h0 is the dimensionless Hamiltonian that describes
coupling to the parameter. The auxiliary Hamiltonian ~H�t�
is discussed below. In h0, k denotes the degree of multi-
body coupling, with the sum running over all subsets of k
systems. We could also include couplings of different

degrees up to a maximum degree, but since the maximum
degree dominates the sensitivity scaling, we stick with a
single degree k in the following. We assume that the
k-body coupling h�k� is symmetric under exchange of probe
systems. Moreover, we assume that k and h�k� are indepen-
dent of the number of probe systems. We make this latter
assumption, that h0 is an intensive property of the probe,
because we want to consider a particular kind of coupling
to the parameter which remains unchanged as N changes.
For real physical systems, the symmetry and intensive
assumptions will hold only approximately and only over
some range of values of N.

The auxiliary Hamiltonian ~H�t� includes all parameter-
independent contributions to H�. For example, it includes
the free Hamiltonians of the probe systems and any
parameter-independent interactions among them. In addi-
tion, we can introduce an undetermined number of an-
cillas and let ~H include the couplings of the ancillas to
the probe systems and any couplings among the ancillas.
Measurements on the ancillas can be included as part of an
overall final measurement on the probe-ancilla system;
since the Cramér-Rao bound that underlies our analysis
holds for all possible measurements and ways of estimating
� from the measurement results, the bounds we derive hold
for arbitrary measurements on the ancillas. This conclusion
applies even to measurements on the ancillas that are
carried out during the evolution time and whose results
are used to condition measurements on other ancillas or to
control the coupling of other ancillas to the probe. By the
principle of deferred measurement [13], which is illus-
trated in Fig. 1, all such measurements can be shuffled to
the end of the evolution time by making appropriate adjust-
ments to ~H.
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FIG. 1 (color online). Quantum-circuit diagrams illustrating the principle of deferred measurement. In the circuit on the left, a
measurement M on the lower ancilla yields result a; this result controls a subsequent unitary Ua, applied to the probe and the upper
ancilla, and determines a conditional measurement Ma on the upper ancilla, which has result b. The two measurement results then
control a unitary Ua;b applied to the probe and a conditional measurement Ma;b on the probe. The left-hand circuit is equivalent to the
circuit on the right, in which the controls are applied coherently (boxed gates UA and UA;B), and the measurements, deferred to the end
of the circuit, tell one which unitary was applied. Without loss of generality, we can assume the measurements are described by
orthogonal projectors Pa, Pbja, and Pcja;b, because any generalized measurement can be modeled by a projection-valued measurement
on an extended system. The unitary transformations in the left-hand circuit, Ua and Ua;b, are evolution operators generated by the
Hamiltonians @�h0 � ~Ha�t� and @�h0 � ~Ha;b�t�, whereas the corresponding coherent controlled unitaries in the circuit on the right,
UA and UA;B, are generated by the Hamiltonians @�h0 �

P
a

~Ha�t� � Pa and @�h0 �
P
a;b

~Ha;b�t� � PbjaPa. It is easy to verify from the
evolution equations that the controlled unitaries in the right-hand circuit are given by UA �

P
aUa � Pa and UA;B �

P
a;bUa;b �

PbjaPa. Thus the principle of deferred measurement can be rendered algebraically in the following way: if we use the left-hand circuit,
the probability for obtaining results a, b, and c takes the form tr�Ca;b;c�0C

y
a;b;c�, where �0 is the initial state of the probe and ancillas

and Ca;b;c � Pcja;bUa;bPbjaUaPaU; pulling the measurement projectors to the left in Ca;b;c changes the unitaries to the corresponding
coherent controlled operations, i.e., Ca;b;c � Pcja;bPbjaPaUA;BUAU, which gives the form of the probability obtained from the right-
hand circuit.
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Now let �0 be the initial state of the probe and any
ancillas. After a time t, the state evolves to ���t� �
U��t��0U

y
��t�, where the evolution operator is generated

by the Hamiltonian (3):

 i@
@U��t�

@t
� H��t�U��t�: (4)

At time t, measurements are made on the probe and an-
cillas, the results of which are used to make an estimate �est

of the parameter. An appropriate statistical measure of the
estimate’s precision is the units-corrected mean-square
deviation of �est from � [3,4],

 �2� �
��

�est

jdh�esti=d�j
� �

�
2
�
; (5)

although care must be taken in using this measure for
periodic parameters such as a phase [14]. All expectation
values are with respect to ���t�.

The quantum Cramér-Rao bound states that [1–4]

 �2� 	
1

I��t�
; I��t� � tr����t�L

2
��t�� � hL

2
��t�i; (6)

where I��t� is the quantum Fisher information. The
Hermitian operator L��t�, defined (implicitly) by

 

1

2
�L��� � ��L�� �

@��
@�
� �i
K�; ���; (7)

is called the symmetric logarithmic derivative and

 K��t� � i
@U��t�

@�
Uy��t� (8)

is the Hermitian generator of displacements in �. If there is
no auxiliary Hamiltonian, K��t� � th0.

For pure states, differentiating �� � �2
� shows that

 L ��t� � 2
@���t�

@�
� �2i
K��t�; ���t��: (9)

Then the Fisher information reduces to a multiple of the
variance of K��t�:

 I ��t� � 4�hK2
��t�i � hK��t�i2� � 4�2K��t�: (10)

For mixed states, the variance provides an upper bound on
the Fisher information, instead of equality [4].

We define the operator seminorm kHk of a Hermitian
operator H as kHk � MH �mH, where MH (mH) is the
maximum (minimum) eigenvalue of H. This seminorm is
invariant under unitary transformations and obeys the tri-
angle inequality, i.e., kH � Kk � kHk � kKk [15]. The
importance of the seminorm is that its square provides an
upper bound on the variance, i.e., �2H � kHk2=4 [16].
The maximum variance is achieved by pure states of the
form �jMHi � ei�jmHi�=

���
2
p

.
We can now summarize the chain of inequalities satis-

fied by the estimation precision,

 

1

��
�

�����������
I��t�

q
� 2�K��t� � kK��t�k; (11)

leaving us with the final task of bounding the seminorm of
K��t� for the dynamics of Eqs. (3) and (4). To do so, we
define a new Hermitian operator,

 F��t� � Uy��t�K��t�U��t� � iUy��t�
@U��t�

@�
; (12)

which satisfies the evolution equation, @F��t�=@t �
Uy��t�h0U��t�, with initial condition F��0� � iUy��0�

�@U��0�=@�� � 0, since U��0� � I. Straightforward inte-
gration provides F��t�, which then yields

 K��t� �
Z t

0
dsU��t�U

y
��s�h0U��s�U

y
��t�: (13)

The triangle inequality and the unitary invariance of the
seminorm imply that

 kK��t�k �
Z t

0
dskU��t�U

y
��s�h0U��s�U

y
��t�k � tkh0k;

(14)

which gives us the desired bound on the sensitivity [17],

 �� 	
1

tkh0k
: (15)

This bound on the estimation precision applies for any
coupling Hamiltonian h0. The optimal sensitivity is deter-
mined by h0 —indeed, by the range of energies in h0 —and
cannot be improved by use of a parameter-independent
auxiliary Hamiltonian ~H or of ancillas not coupled directly
to the parameter, although both of these might be used in
practice to make the required optimal measurement acces-
sible [8].

We now apply the bound (15) to draw physical conclu-
sions about the sensitivity scaling for the various forms of
h0. For the separable, symmetrically coupled Hamiltonian
of Eq. (1), we recover the usual 1=N scaling. But for the
symmetric k-body coupling of Eq. (3), the triangle inequal-
ity applied to the seminorm,

 kh0k �
X

fj1;...;jkg

kh�k�j1;...;jk
k �

N
k

� �
kh�k�k �

Nk

k!
kh�k�k; (16)

gives a sensitivity limit that scales as 1=Nk. For k > 1, the
coupling Hamiltonian itself generates entanglement be-
tween probe systems, making it more difficult to compare
the sensitivities afforded by initially entangled and sepa-
rable input states. Our objective here is not to make such a
comparison, but to state the optimal sensitivity scaling that
can be achieved in principle given a k-body coupling
Hamiltonian. It is in this sense that we refer to k as
generating a family of distinct quantum parameter estima-
tion problems.

An important special case occurs when ~H�t� � 0, so that
K��t� � th0, the k-body coupling terms in h0 are products
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of single-system operators, i.e., h�k�j1;...;jk
� hj1

� � � hjk , and
the single-system operators have nonnegative eigenvalues.
Then the inequalities in Eqs. (14) and (16) become equal-
ities, and an initial cat state (2) attains the maximum
deviation, i.e.,

 �K��t� �
1

2
kK��t�k �

t
2
kh0k �

t
2

N
k

� �
��kM � �

k
m�:

(17)

The brief discussion (for k � 1) following Eq. (2) can be
applied directly to achieving the sensitivity limit for arbi-
trary k, except that the relative phase generalizes to

 ��t� � �t
N
k

� �
��kM � �

k
m�:

Our result can be used to analyze the recent paper by
Roy and Braunstein (RB) [12], which inspired the work we
report here. In our notation, RB consider a system of N
qubits with a dimensionless coupling Hamiltonian

 h0 �
1

2
��� � ���; �� �

YN
j�1

�Xj � iYj�; (18)

where Xj and Yj are Pauli operators for the jth qubit. When
the products are multiplied out, h0 becomes a sum of
2N�1 commuting Pauli products; it has maximum devia-
tion �h0 � kh0k=2 � 2N�1, which gives a quantum limit
that scales exponentially in N. RB suggest that their
Hamiltonian describes the atomic transitions of N atoms
associated in a molecule, but the fundamental coupling in
this case is a separable sum, as in Eq. (1), describing
separate transitions for each atom. The RB coupling could
arise as an effective Nth-order process, but it would not be
justified to neglect processes of other orders. To achieve
the RB Hamiltonian as a fundamental interaction would
require coupling the atoms to a rank-N tensor field, but in
this case, every value of N would involve a different
fundamental coupling. One could scarcely claim to be
estimating the same coupling constant as N changes if
the fundamental interaction is changing.

The most realistic possibility for taking advantage of
multibody couplings in parameter estimation will be for
pairwise couplings (k � 2). Hamiltonians with symmetri-
cally parametrized two-body terms arise naturally in field-
theoretic systems, such as quantum degenerate gases,
superconductors, and atomic ensembles coupled to a com-
mon electromagnetic field mode. Atom-atom interactions
in a Bose-Einstein condensate [18] might offer a physi-
cally realistic approach to surpassing the conventional
Heisenberg limit, possibly even achieving 1=N2 scaling.
We envisage situations where an external field modulates
the strength of the two-body scattering term in the second-
quantized condensate Hamiltonian. Such a modulation
occurs for both a magnetically tuned Feshbach resonance
and density variations due to gravitational gradients.

While exponential sensitivity improvements appear un-
physical, more modest quadratic or other polynomial im-
provements beyond the Heisenberg limit could be essential
for achieving the sensitivities required in the most demand-
ing precision measurements.
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