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The structure and properties of optimal networks depend on the cost functional being minimized and on
constraints to which the minimization is subject. We show here two different formulations that lead to
identical results: minimizing the dissipation rate of an electrical network under a global constraint is
equivalent to the minimization of a power-law cost function introduced by Banavar et al. [Phys. Rev. Lett.
84, 4745 (2000)]. An explicit scaling relation between the currents and the corresponding conductances is
derived, proving the potential flow nature of the latter. Varying a unique parameter, the topology of the
optimized networks shows a transition from a tree topology to a very redundant structure with loops; the
transition corresponds to a discontinuity in the slope of the power dissipation.
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The design of an optimal network for the distribution of
valuables such as water, electricity, or telephone signals is
a matter of great practical import in urban planning which
has been studied since antiquity [1] and acquired renewed
interest during ‘‘the war of the currents‘‘ between
Westinghouse and Edison in the late 1800s [2]. An over-
view over hydraulic network design principles can be
found in [3]. Recently, natural systems such as river net-
works and vascular systems have been fruitfully inter-
preted in this light [4–6]. A different family of transpor-
tation problems derives from the Monge-Kantorovich
problem posed in 1781 [7]. Hence formal models of opti-
mal transport networks have attracted attention over many
years [8,9]. However, different studies use different defi-
nitions of network and optimize different functionals. For
example, Durand [10,11] considers hydraulic networks
whose currents derive from a potential, explicitly analo-
gous to electrical networks; the networks are embedded in
an ambient space, and he studies the optimal geometry and
the relation between the local geometry and local topology.
On the other side, Banavar et al. [6] propose a more
abstract model where the graph is not assumed to be
embedded in a target space, nor are the currents through
the nodes explicitly constrained to derive from a potential.
This allows them to furnish a strict proof that the topology
of the optimized flow pattern [6] depends on the convexity
of their cost function, but makes a direct physical inter-
pretation of the model more elusive. In the following, we
shall introduce a third model of an optimal transport net-
work from whom both of these previous models can be
derived, so all formulations are, in fact, equivalent.

Consider an electrical transport network on a graph
composed of nodes k interconnected by links (k, l).
There is a given current source ik at each node and the
total current input must add to zero:

P
kik � 0. There are

variable currents Ikl flowing through the links; the sum of
all currents impinging on a given node k must equal the
given current sources: ik �

P
lIkl (Kirchhoff’s current

law). We associate a resistor Rkl � 0 to each link (k, l)
and decompose its value as Rkl � �dkl�kl��1, where dkl >
0 is a given weight and the conductances �kl are variable;
considering �kl as a conductivity per unit length, dkl can be
thought of as the length of the link. The dissipation rate J is
then a function of the currents Ikl through the links and the
conductances �kl:

 J �
X
�k;l�

I2
kl

�dkl�kl�
(1)

We shall minimize this dissipation rate J over the currents
Ikl and the conductances �kl with the local constraint given
by Kirchhoff’s current law, and a supplementary global
constraint that the sum over the conductances raised to a
given power � > 0 is kept constant:

 K� �
X
�k;l�

��kl:

One may interpret this constant as an amount of resources
we have at our disposal to build the network [12].

Since we allow �kl and Ikl to vary independently, the
currents are not explicitly constrained to derive from a
potential at the nodes Uk and Kirchhoff’s voltage law
(the sum of the potential differences on a loop vanishes)
need not apply.

Using a Lagrange multiplier �, we define the function
��f�klg; fIklg� as

 ��f�klg; fIklg� �
X
�k;l�

I2
kl

�dkl�kl�
� �

X
�k;l�

��kl: (2)

The necessary conditions for a minima of J with constant
K are then

 

@�

@Ikl
� 0;

@�

@�kl
� 0: (3)

Let us first consider the derivatives with respect to Ikl. Let
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f~Iklg, f~�klg minimize J. Adding a circular current X� on a
loop � to the currents (Fig. 1) does not violate the con-
straints. We (re)define the directions of the currents ~Ikl on
the loop to be parallel to the loop current X�. Then

 0 �
@�

@X�

��������X��0
�

X
loop�

~Rkl~Ikl: (4)

Thus Kirchhoff’s voltage law holds at the minimum of J,
so the currents though the links derive from potential
differences between the nodes: ~Ikl � ~Rkl�Ul �Uk�. Note
that this is not the case for every arbitrary current distribu-
tion. For instance, if all currents on the loop in Fig. 1 are
positive ~Ikl > 0, then there exists no set of ~Rkl � 0 to fulfill
this relation. Let us now consider the derivatives of � with
respect to �kl [Eq. (3)]. With the constraint of a constant K,
we obtain an explicit scaling relation between the currents
and the conductivity in the minimal configuration:

 �kl �
�I2
kl=dkl�

1=1���P
�m;n��I

2
mn=dmn�

�=1��
�

1=�
K: (5)

We can now write the total dissipation [Eq. (1)] in terms of
the currents alone as

 J�fIklg� �
1

K

�X
�k;l�

�I2
kl=dkl�

�=1��
�

1��1=��
: (6)

Since for � > 0, the function x1��1=�� is monotonically
increasing, the original minimization problem is reduced
to the minimization of

 C�fIklg� �
X
�k;l�

�I2
kl=dkl�

�=1��: (7)

By setting

 � �
2�
�� 1

(8)

and rescaling the weights as wkl � d���=1���
kl , the quantity

to be minimized is now

 C�fIklg� �
X
�k;l�

wklI
�
kl (9)

which is exactly the model used by Banavar et al. [6]. They
give a strict proof that for �< 1, the resulting structure
may not have any loop, and each spanning tree is a local
minimum. For �> 1, there are in general loops and a
unique minimum. Because of the correspondence between
� and �, this result must apply also to our original model
where � < 1 (� > 1) corresponds to a �< 1 (�> 1).

On the other hand, the correspondence between the
different models allows an important conclusion about
the model of Banavar et al. Since in both formulations,
the minimum is obtained by the same set of currents, and
since in our model these currents must derive from poten-
tial differences between the nodes, this must be true for the
minimum of the Banavar et al. model, too (see also [13]).
We can furthermore write down directly the values of the
corresponding resistors as

 Rkl � �dkl�kl��1 � AwkljIklj��2 (10)

with an arbitrary positive constant A. Rkl thus scales ex-
plicitly with the local currents for � � 2.

Since positive � corresponds to 0< � < 2, the equiva-
lence of the two models is restricted to this parameter
range. �> 2 corresponds to values � <�1, for which
our model collapses into infinitely many degenerate min-
ima. The relations (3) correspond instead to a saddle node
of J: a minimum with respect to the Ikl and a maximum
with respect to the �kl. Nevertheless direct inspection
shows that the current flow in the Banavar et al. model is
potential with the set of resistors given by Eq. (10) even for
�> 2 [14].

To get a deeper insight into the transition at � � 1, we
search numerically for the minimal dissipation configura-
tion of an example network, a triangular network of con-
ductivities with a hexagonal border, with equal weights
dkl � 1. The total number of nodesNnodes scales roughly as
the square of the linear dimension of the network, given by
the diameter of the graph Ndia. Except for those on the
border, each node is linked by conductivities to six neigh-
boring nodes.

We place a current source at a corner of the hexagon (i0),
the remaining (Nnodes � 1) nodes present homogeneous
distributed sinks; each node absorbs ik � �i0=�Nnodes �
1�. As an order parameter, we will consider the normalized
dissipation rate Jmin=Jhomo, where Jhomo is the total dissi-
pation with a constant conductivity distribution �kl �
const, and Jmin is the dissipation for the optimized distri-
bution of the conductivities. Note that Jhomo corresponds
also to �! 1.

The previous discussion allows us to simplify the mini-
mization problem enormously: using the scaling relation
between �kl and Ikl, one can restrict the search of the
minimum to the space of the currents or the space of
conductivities. Furthermore, we can use the fact that the
optimized current distribution derives from a potential Uk
to construct a simple relaxation algorithm. Starting with a
random distribution of �kl, we calculate first the values of
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FIG. 1. Sketch of a loop � indicating the direction of the
currents. Every perturbation of the Ikl satisfying the constraints
can be written as a weighted sum of such loops.
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the potential at the nodes by solving the system of linear
equations ik �

P
lRkl�Uk �Ul�, then the currents through

the links Ikl are determined. We use these currents to
determine a first approximation of the optimal conductiv-
ities on the basis of the scaling relation. Then, the currents
are recalculated with this set of conductivities, and the
scaling relation is reused for the next approximation.
These steps are repeated until the values have converged.
We check by perturbing the solution that it actually is a
minimum of the dissipation, which was always the case.

For all � > 1, independently of the initial conditions, the
same conductivity distribution is obtained, which con-
forms to the analytical result of [6]: there exists a unique
minimum which is therefore global.

Furthermore, the distribution of �kl is ‘‘smooth,’’ vary-
ing only on a ‘‘macroscopic scale,’’ as show in Fig. 2(a).
No formation of any particular structure occurs. However,
the conductivity distribution is not isotropic. We can inter-
pret the conductivity distribution as a discrete approxima-
tion of a continuous, macroscopic conductivity tensor (see
also [10]). The smooth aspect of the distribution is con-
served while approaching �! 1 while the local anisotropy
increases, while the values of all �kl remain finite, even if
they get very small. For � � 1:5 and Ndia � 15, the con-
ductivity distribution spreads already over eight decades
and becomes still broader as �! 1�, in which limit the
number of iteration steps diverges as the minima becomes
less and less steep.
� � 1 presents a marginal case. The results of the

simulation suggest that the minimum is highly degenerate;
i.e., there are a large number of conductivity distributions
yielding the same minimal dissipation.

For � < 1, the output of the relaxation algorithm is
qualitatively different [Fig. 2(b)]. A large number of con-
ductivities converge to zero so that no loop remains. The
highly redundant network is transformed to a spanning
tree topology and the currents are canalized in a hierarch-
ical manner. This, too, is predicted by the analytical results
[6]. In contrast to � > 1, the conductivity distribution
cannot be interpreted as a discrete approximation of a
conductivity tensor: for Ndia ! 1, the structure becomes
fractal.

For different initial conditions, the relaxation algorithm
yields trees with different topologies: each local minima in
the high-dimensional and continuous space of conductiv-
ities f�klg corresponds to a different tree topology. To find
the global minima with � < 1, we search consequently in
the (exponentially large) space of tree topologies using a
Monte Carlo algorithm. (We start with some initial tree and
then switch links without creating loops and without dis-
connecting a part of the network.) Note that for a tree
topology, the currents do not depend on the values �kl
and, using the scaling relation, one may directly write
down the dissipation rate for a given tree; the iterative
relaxation is not necessary here. This regime has been
widely explored in the context of river networks
[4,5,13,15], mainly for a set of parameters that corre-
sponds, in our case, to � � 0:5. An example of a resulting
minimal dissipation tree structure is given in Fig. 2(c).
Note also, that the scaling relations can be seen as some
kind of erosion model: the more currents flows through a
link, the better the link conducts [4].

The qualitative transition is reflected also quantitatively
in the value of the minimal dissipation [Fig. 3(a)]. The
points for � > 1 were obtained with the relaxation algo-
rithm, the points � < 1 by optimizing the tree topologies
with a Monte Carlo algorithm. For �! 1, Jmin=Jhomo !
1 by definition; for �! 0, Jmin=Jhomo ! 0, because the
vanishing �kl allow the remaining �kl ! 1.

Figure 3(b) shows the behavior of minimal dissipation
rate close to � � 1. For � smaller than 1, the relaxation
method only furnishes a local minimum, the Monte Carlo
algorithm searching for the optimal tree topologies gives
lower dissipation values. The different values correspond-
ing to different realization indicate that the employed
Monte Carlo method does not find the exact global min-
ima. For � > 1, the optimal tree obtained by the
Monte Carlo algorithm is not the optimal solution since
the absolute and only minima has loops. The dissipation
rate which results from the relaxation algorithm is then, of
course, lower than the dissipation of any tree. While the
curve is continuous, the crossover at � � 1 shows a clear
change in the slope of Jmin���. One could interpret this
behavior as a second order phase transition. (The change in

 

)c()b()a(

FIG. 2. Examples of the optimized conductivity distributions obtained by the relaxation method for (a) � � 2:0 and (b) � � 0:5. For
� < 1, the relaxation leads in general only to a local minimum. The global minimum can be approached by searching in the space of
tree topologies. The result for � � 0:5 is shown in (c). The arrows indicate the localized inlet.
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slope is, of course, preserved in the function C�Ikl� used by
[6].)

As an intriguing practical application of these models,
one may, for instance, cite the venation of plant leaves. The
leaf venation pattern forms a hierarchical and shows an
enormous redundancy of loops [16,17]. Secondary veins
branch from a central primary vein and connect on the
other end to other secondary veins; third order veins are
connected at both ends to either first or second order veins,
and only at the very small scale (veins of the order of nine
or ten), the veins do not close loops but form small trees. It
has been argued that this particular structure optimizes the
water distribution in the leaf [18,19]. From experimental
evidence [20] it is known that this water transport through
the veins derives from a pressure gradient; our model
should therefore a rather good description of this biological
network. However, we showed that optimization either
leads to a tree topology, or to no structure at all. The
hierarchical loop structure of the venation network can
thus not be explained by the optimization of a steady state

water transport, even if Murray’s law seems to hold at the
nodes of the network [21].
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FIG. 3 (color online). (a) The normalized minimum dissipa-
tion rate Jmin=Jhomo as a function of � for a network with Ndia �
15 (462 links) and a network with Ndia � 31 (2070 links, in red
or in gray). Note the discontinuity of the slopes at � � 1. (b) A
detailed view of the crossover at � � 1 for Ndia � 15. Cross
symbols show data points obtained by optimizing a tree topol-
ogy, circles show the output of the relaxation algorithm. The
continuous lines indicate the actual minimum.
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