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Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris 7-Denis Diderot, 2 Place Jussieu-75251 Paris Cedex 05, France

(Received 21 July 2006; published 21 February 2007)

The structure of pipe networks minimizing the total energy dissipation rate is studied analytically.
Among all the possible pipe networks that can be built with a given total pipe volume (or pipe lateral
surface area), the network which minimizes the dissipation rate is shown to be loopless. Furthermore, such
an optimal network is shown to contain at most N � 2 nodes in addition to the N sources plus sinks that it
connects. These results are valid whether the possible locations for the additional nodes are chosen freely
or from a set of nodes (such as points of a grid). Applications of these results to various physical situations
and to the efficient computation of optimal pipe networks are also discussed.
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Finding the most efficient transport network is an issue
arising in a wide variety of contexts [1,2]. One can cite,
among others, the water, natural gas, and power supply of a
city, telecommunication networks, rail, and road traffic,
and more recently the design of labs-on-chips or micro-
fluidic devices. Moreover, this problem also appears in
theoretical works intending to describe the architecture of
the vascular systems of living organisms [3,4]. Generally
speaking, consider a set of sources and sinks embedded in a
two- or three-dimensional space, their respective number
and locations being fixed. The flow rates into the network
from each source, and out of the network through each
sink, are also given. The problem consists in interconnect-
ing the sources and sinks via possible intermediate junc-
tions, referred to as additional nodes, in the most efficient
way. That is, to minimize a cost function of general formP
kwkf�ik�, where the summation is over all the links that

constitute the network. wk is the ‘‘weight’’ associated with
the kth link, and f is some function of the flow rate ik
carried by this link. Minimization of the cost function can
be done over different optimization parameters and with
different constraints.

Here, the structure of pipe networks that minimize the
total dissipation rate U �

P
krki

2
k is studied, where the

weight rk is the ‘‘flow resistance’’ of pipe k, defined as

 rk �
�lk
smk

; (1)

� being some positive constant, lk and sk the length and
cross-sectional area of each pipe, respectively, and m a
positive constant characterizing the flow profile. For most
flows encountered in physics, m � 1 (some examples of
flows are given later). In this Letter, two major results are
reported. First, among all the possible pipe networks that
can be built with a given value of total pipe volume (or total
lateral surface area), the network that minimizes U is
loopless. This result suggests an explanation for the ob-
served topologies in the vascular systems of various living
organisms [3,5]. Second, the number of additional nodes in

this optimal network cannot exceed N � 2, where N is the
number of initial nodes (sources plus sinks). As a conse-
quence, the number of possible different topologies for the
optimal network is finite.

Flow rates in a network are not independent but must
satisfy a conservation law at every source, sink, and addi-
tional node. That is, the sum of algebraic flow rates at each
site must satisfy:

 

X
adjoining

pipes

ik �
�

0 at every additional node;
Iq at source or sink q; (2)

where Iq is the fixed inflow (outflow) at the source (sink) q
(Iq > 0 for a source, Iq < 0 for a sink, and

P
sourcesIq �

�
P

sinksIq). The conservation laws (2) alone do not
uniquely determine the flow in each pipe of the network.
In many situations ik also derives from a potential func-
tion (electrical potential, pressure, concentration, tempera-
ture, . . .) so that the potential difference vk, the flow rate ik,
and the resistance rk of pipe k are related by Ohm’s law
vk � rkik. In this case, the flow distribution is unique, and
each flow rate ik is an implicit function of the pipe lengths
and pipe cross sections.

Both the network geometry (characterized by the pipe
cross sections and pipe lengths) and topology (the number
of pipes and junctions, and their specific arrangement) can
be optimized in order to minimize U. However, minimi-
zation must be done with some constraint on the pipe cross
sections (otherwise, the optimization problem would be
trivial: any network connecting the sources to the sinks
with infinitely large pipes would be a solution). Here, a
global constraint Cn �

P
klks

n
k on the total volume (n � 1)

or total surface area (n � 1
2 ) of the network is considered.

Such a global constraint is less restrictive than the local
constraint used in other recent studies on optimal networks
[5,6], where every pipe cross section is fixed.

Let us now prove that, under the assumptions above, the
network that minimizes U is loopless. Let us start with a
network of given topology, whose geometrical parameters
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(pipe cross sections and pipe lengths) are adjusted to
minimize the dissipation rate (while preserving Cn).
Indeed, optimization of the network geometry has been
studied in a previous work [4]: first, when pipe
cross sections are adjusted, the flow rate ik carried by
each pipe in the network scales with its cross-sectional
area sk as

 jikj � �Is�m�n�=2
k ; (3)

where I is the total flow rate through the network (I �P
sourcesIq � �

P
sinksIq), and � is a parameter that depends

on m, n, and the geometry and topology of the network.
Thus, the dissipation rate in this network is

 U � ��I�2Cn: (4)

Then, pipe lengths can also be adjusted in order to mini-
mize U, while preserving Cn [according to Eq. (4), this is
equivalent to minimizing �, which still depends on the pipe
lengths]. Actually, coordinates of the additional nodes are
the appropriate independent optimization parameters.
When these coordinates can be freely adjusted, it has
been shown [4] that the following vector balance is also
satisfied at every additional node of the network with
optimized cross sections and node locations:

 

X
k

snkek � 0; (5)

here ek is the outward-pointing unit vector along each
adjoining pipe. No such geometrical rule can be estab-
lished when the locations of the additional nodes must be
chosen from a set of nodes (such as points of a grid, or
some particular cities of a country). It must also be noted
that Eqs. (3) and (5) are necessary conditions for the
minimum of U with respect to the geometrical parameters.

Suppose that this network, which satisfies Eq. (3) [and
possibly Eq. (5)], contains loops. Let us show that, from
this original network, a new loopless network with a lower
dissipation rate (and with a same value of Cn) can be built.
Consider an arbitrary loop in this network. To go from a
given junction A to another junction B of this loop, there
are two different paths, noted (�) and (�), as depicted on
Fig. 1(a). Let us make a shift of material, in such a way that
flows in path (�) tend to be strengthened in one direction
(say A to B) and flows in path (�) tend to be strengthened
in the opposite direction (B to A). That is, the new cross-
sectional areas s0k in the loop are defined as: s0�m�n�=2

k �

s�m�n�=2
k � s�m�n�=2

0 with, for path (�), a plus sign if flow
rate in pipe (i, j) is in direction A! B and a minus sign if
the flow rate is in opposite direction, while signs are
inverted for path (�) [see Fig. 1(b)]. s0 is a positive number
smaller than any cross-sectional area sk of the original
loop. Cross sections outside the loop remain unaltered
(s0k � sk). Note that flows in a loop cannot turn all clock-
wise, or counterclockwise (otherwise, the potential differ-
ence VA � VB between nodes A and B, and thus the flow

rates in the loop, would trivially be zero). This guarantees
that the cross-sectional areas of the loop did not all simul-
taneously increase (or decrease).

Such a variation of cross-sectional areas implies a redis-
tribution of flows in the entire network. Let fi0kg be the new
distribution of flow rates satisfying Eq. (2) and Ohm’s law,
r0k � �lk=s

0m
k the new resistances, and U0 �

P
kr
0
ki
02
k the

new dissipation rate. Although we do not know the values
of the new flow rates, an upper bound on U0 can be
established, using Thomson’s principle [7,8]. Consider a
network of given resistances r0k that connects the sources to
the sinks. Thomson’s principle states that—among all
possible flow distributions fjkg which satisfy the equations
of conservation (2)—the actual flow distribution (i.e., the
one deriving from a potential function and satisfying
Ohm’s law) is the one that makes the function

P
kr
0
kj

2
k an

absolute minimum. Let us consider, in particular, the flow
distribution defined as jk � ik � i0 along path (�), jk �
ik � i0 along path (�), and jk � ik for any pipe outside the
loop. i0 is some positive number, and fikg is the actual
distribution in the original network, the sign of ik being
(re)defined in both paths as positive if directed from A to
B. The distribution fjkg satisfies conservation equations (2),
since the distribution fikg does. Besides, by choosing i0�
�Is�m�n�=2

0 and using Eq. (3), the flow rate jk can be
rewritten: jk � sgn�ik��Is

0�m�n�=2
k . Thus, according to

Thomson’s principle:

 U0 � ��I�2C0n; (6)

with C0n �
P
klks

0n
k . Let us now compare the new value of

pipe volume/surface area C0n with the original value Cn.
This can be done by studying the variation of C0n with s0.
The derivative of this function with respect to x � s�m�n�=2

0
is

 

FIG. 1. Shift of material in a loop of the network: (a) the
original loop, where flow directions in each pipe are indicated
with arrows; (b) the same loop, where the cross-sectional area of
a pipe is increased when the direction of its carried flow is A!
B along path (�) or B!A along path (�), and decreased
otherwise. The other cross-sectional areas in the network remain
unaltered.
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@C0n
@x
�

2n
m� n

X
path �

lk�s
�m�n�=2
k � x��n�m�=�n�m�

�
2n

m� n

X
path �

lk�s
�m�n�=2
k � x��n�m�=�n�m�: (7)

Since m � n, @C
0
n

@x is a decreasing function of x, and then

 

@C0n
@x
�

�
@C0n
@x

�
x�0

: (8)

Therefore, if the bound in inequality (8) is negative, C0n is a
decreasing function of x. Using Eqs. (1) and (3), this bound
can be rewritten as

 

�
@C0n
@x

�
x�0
�

2n
m� n

� X
path�

rkjikj �
X

path�

rkjikj
�
: (9)

We could have chosen to reinforce flows in direction
B!A in path (�), and A! B in path (�) instead,
which comes to swapping (�) and (�) in the calculations
above. Inequalities (6) and (8) would still be satisfied for
this new shift of material, but this time with an opposite
sign for �@C

0
n

@x �x�0 [see Eq. (9)]. So, necessarily �@C
0
n

@x �x�0 � 0
for one of the two shifts, and C0n is a decreasing function of
s0 for this particular shift, implying that C0n�s0� � C0n�0� �
Cn. From Eqs. (4) and (6), we obtain that the corresponding
dissipation rate U0 is also lower: U0�s0� � U [9].

In a further step, the total volume/surface area can be
increased up to its original value Cn by increasing any
cross-sectional areas in the network. This will imply a
further decrease in U [10]. Thus, we find a small perturba-
tion of the cross sections such that the dissipation is
reduced for a fixed value of Cn [11]. The reasoning above
can be applied with increasingly large values of s0, until
eventually one of the pipes in the loop has a zero cross-
sectional area, and so one of the paths is cut off. Possible
dead branches can be removed, the equivalent material
being shifted to the rest of the network by increasing any
other cross-sectional areas again, so that the constraint
stays at its initial value while the dissipation rate is sub-
jected to a further decrease. Finally, the whole procedure
can be repeated to eliminate all the duplicate paths until
there are no loops in the network. The argument holds even
in case of overlapping loops (that is, loops having pipes in
common), and more generally for any topology of the
original network. Therefore, it comes that the architecture
of the network that minimizes U is loopless. Note that
condition (5) is not used throughout the reasoning, so the
demonstration is valid whether or not the positions of
additional nodes can be freely adjusted.

It must be mentioned that the absence of loops in the
least dissipative network has already been conjectured
(without proof) in the particular case of a constrained total
volume [12]. A similar result has also been obtained in

other studies on optimal networks: Banavar et al. [5]
analyzed the flow rate distribution minimizing the cost
function

P
kwkjikj

�. They showed that the flow pattern
formed by this distribution contains no loops if 0 � � <
1, and contains loops if � > 1. In that study, however, both
the network topology and the weight wk of every link are
set. The optimization parameters are the flow rates ik,
subject to the conservation laws Eq. (2) only (they do not
necessarily derive from a potential function and obey
Ohm’s law). This optimization problem is then very differ-
ent than the one analyzed in the present Letter. In a differ-
ent study, Xue et al. [6] showed that the network
minimizing the cost function

P
klkjikj

� is also loopless
when 0 � � < 1 [13]. In that study, both the network
topology and the pipe lengths are free to be adjusted, but
the cross sections are set to 1; instead of a global constraint
on the total pipe volume/surface area, Xue et al. consider a
more restrictive constraint on every pipe cross section.
Therefore, the absence of loops in the network minimizing
U and preserving Cn cannot be deduced from that study.
Indeed, using Eqs. (3) and (4), the dissipation rate of a
network with optimized cross sections can be rewritten in
terms of the pipe lengths and the flow rates alone: U �
��I��

P
klkjikj

�, where � � 2m=�m� n� and � �
2n=�m� n� � 1. The prefactor � in this expression is a
parameter dependent on the pipe lengths. Thus, U differs
clearly from the cost function studied in [6].

Let us now show that the number of additional nodes is
at most N � 2 in the optimal network, where N is the total
number of sources plus sinks. This result limits the number
of possible topologies for the optimal network. Suppose
first that the optimal network is a connected loopless net-
work (or tree). According to Euler’s formula [14], a tree
has one more node than it has links. So, the number of links
in a network with A additional nodes is N � A� 1. Since
each link has two ends, the number of ‘‘incident lines,’’
summed over all the nodes, is 2�N � A� 1�. This number
can be evaluated differently: let Np be the number of
sources or sinks with p incident lines. Since each source
or sink is linked to the rest of the tree, the smallest value of
p for which Np has a nonzero value is 1, so

P
p�1Np � N.

Similarly, let Ap be the number of additional nodes with p
incident lines. By definition, a twofold junction can exist
only if its two links are not parallel. Therefore, such
junctions cannot exist in a network satisfying Eq. (5).
Twofold junctions could a priori exist if their positions
are chosen from a set of nodes. However, they can be
favorably (i.e., with no increase of U and Cn) removed
and their two adjoining pipes replaced with a straight one,
as depicted in Fig. 2. Thus, the smallest value of p for
which Ap is not zero is p � 3 in both cases, and the total
number of incident lines is:

P
p�1pNp �

P
p�3pAp.

Comparing these two expressions for the number of inci-
dent lines, and considering that

P
p�1pNp � N andP

p�3pAp � 3A, it appears that
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 A � N � 2; (10)

as was to be proven. When both the number of sources and
the number of sinks are strictly larger than 1, the optimal
network might be disconnected. However, using the rea-
soning above on each of the trees that constitute this
optimal network, it comes that the inequality (10) is still
satisfied.

Because of the broad definition of the flow resistance
[Eq. (1)], the results presented in this Letter can be applied
in various situations. For instance, the m � 1 case corre-
sponds to electrical current in wires, liquid flow in porous
conducts, mass or heat diffusion in bars (provided that for
the latter, the bar lateral surface is insulated). The m � 2
case corresponds to the laminar Poiseuille flow in hollow
pipes. Minimization can be done for a fixed lateral surface
area (n � 1

2 ) if one wants to save the material required to
build the hollow pipes, or for a fixed volume (n � 1), if one
wants to preserve the amount of liquid flowing through the
network. Furthermore, these results may also explain the
treelike structure of the circulatory system of various living
organisms [3,5].

Unfortunately, the results presented in this Letter do not
give insights into the method of building the optimal net-
work practically, or even into the uniqueness of such an
optimal network. In fact, as for the Steiner tree problem—
which consists in finding the tree of minimal length inter-
connecting a set of given points—this problem is likely to
be NP hard, meaning that the solution cannot be found
without an exhaustive search of all the possible topologies.
However, the NP hardness does not exclude the possibility
of establishing basic properties on the geometry and topol-
ogy of Steiner trees [15]. Similarly, we were able to address
features on the structure of pipe networks minimizing the
total dissipation rate under a global constraint. Specifically,
the upper bound on the number of additional nodes restricts
the number of possible topologies for the optimal net-
work(s). These results make possible the conception of

efficient algorithms for computing the optimal pipe net-
work problem [6]. In many situations, however, the ca-
pacity of the network to resist random injuries may also
play a key role in its design. Obviously, a reticulate net-
work containing redundant paths is more adapted than an
arborescent one for that purpose. Therefore, it is some-
times essential to look for a compromise between optimi-
zation of flow and robustness of the network.
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(a) (b)(a) (b)

FIG. 2. (a) The two adjoining pipes of a twofold junction carry
flows in opposite directions in order to satisfy flow rate conser-
vation. (b) The two adjoining pipes can be favorably replaced
with a straight one: since the total pipe length is shortened, the
dissipation rate will be decreased for a fixed value of Cn.
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