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From the hydrodynamical equations of vesicle dynamics under shear flow, we extract a rheological law
for a dilute suspension. This is made analytically in the small excess area limit. In contrast to droplets and
capsules, the rheological law (written in the comoving frame) is nonlinear even to the first leading order.
We exploit it by evaluating the effective viscosity �eff and the normal stress differences N1 and N2. We
make a link between rheology and microscopic dynamics. For example, �eff is found to exhibit a cusp
singularity at the tumbling threshold, while N1;2 undergoes a collapse.
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Simple fluids and elastic solids are described by univer-
sal equations, namely, Navier-Stokes and Lamé equations.
A derivation of similar laws for complex fluids continues to
pose a formidable challenge. Complex fluids include sus-
pensions, emulsions, polymer solutions, blood, and so on.
The major challenge for the extraction of a constitutive law
lies in the inherent coupling between microscales (repre-
sented by the entities suspended in the fluid) and the flow at
the global scale. As a consequence, a time scale separation
between micro and macrodynamics is not permissible. In
the general case no universal constitutive law (if any) is
available.

Macroscopic constitutive laws for complex fluids should
generally carry information on the microscale, despite the
fact that the law represents an averaged property. In prin-
ciple, a derivation of a constitutive law should emerge from
the microscopic knowledge of the dynamics of the sus-
pended entities. The present Letter is directed along this
line by focusing on rheology of vesicle suspensions.

The problem of a vesicle under flow has revealed several
interesting dynamics such as tank-treading [1], tumbling
[2,3], and vacillating-breathing [4] modes, and it continues
to hold an increasing amount of interest both theoretically
[1–3,5], and experimentally [6]. Besides the understanding
of the various intricate dynamics of individual vesicles
under nonequilibrium conditions, it is highly desirable to
understand their rheological properties.

We perform a homogenization technique to extract the
stress tensor at the global scale as a function of the dy-
namical evolution of the vesicles in the dilute regime. Even
to the first leading order, the extracted rheological law
(written in the comoving frame) is found to be nonlinear,
in marked contrast with droplets and capsules rheology.
We make a link between the various dynamics and the
overall rheology. In particular, we show that the effective
viscosity exhibits a cusp singularity at the tumbling thresh-
old, while the normal stress differences collapse in the
tumbling and vacillating-breathing (VB) regimes.

The vesicle suspension is submitted to a linear shear
flow V0 � � _�y; 0; 0�, where _� is the shear rate. The flow
outside (and inside) a vesicle is described by the Stokes

equations. Lengths are reduced by the vesicle radius r0 (r0

designates the radius of a sphere having the same volume),
and time by _��1. The shape of the vesicle can be written in
the general case as an infinite series on the basis of spheri-
cal harmonics Ynm

 r � 1� �
X1
n�0

Xn
m��n

Fnm�t�Ynm��;��; (1)

where � is a small parameter expressing a small deviation
from a sphere, � and � are the usual angles in spherical
coordinates, and Fnm�t� is a time-dependent amplitude (to
be determined) of the corresponding spherical harmonic.
Using the expression of spherical harmonics in terms of
Cartesian coordinates, ri, we have

 

X2

m��2

F2m�t�Y2m��;�� �
X

i;k�x;y;z

3fik�t�rirk; (2)

fik are linear combinations of F2m. The algebra has proven
to be more convenient with fik. Since a shear flow induces
a shape deformation from a sphere which involves only
second order harmonics (i.e., n � 2), as shown in [4], only
Y2m enter the calculation.

Our strategy is as follows [4,7,8]: The Stokes equations
are solved for the velocity field inside and outside the
vesicle subject to the membrane bending forces and to a
fictitious force (actually a Lagrange multiplier) enforcing
local membrane incompressibility. The integration con-
stants of the velocity fields and the Lagrange multiplier
are obtained by applying (i) the continuity of the (normal
and tangential) velocity across the membrane, (ii) conti-
nuity of normal and tangential stress at the membrane,
(iii) membrane incompressibility. A lengthy but straight-
forward algebra leads to a compatibility (or solvability)
condition which results into the following evolution equa-
tion for the shape of the vesicle:

 

Dfij
Dt

�
20eij

23�� 32
�

192�
23�� 32

fxyfij
�

; (3)

where eij � �@ivj � @jvi�=2 is the symmetric part of the
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velocity gradient of the unperturbed flow and � � ��=� is
the viscosity ratio between the interior and the exterior,
where � is the membrane excess area defined by A �
4�� �, A being the dimensionless area of the vesicle.

The quantity D=Dt entering Eq. (3) is the Jaumann (or
corotational) derivative defined as

 

DM
Dt

�
DM
Dt
�

1

2
�!M�M!�; (4)

where M is any second order tensor, D=Dt is the usual
material derivative, and! � �rv�rvT�=2 is the vorticity
tensor.

Equation (3) constitutes a basis for the derivation of the
constitutive law. The rheological relation is obtained by
performing the spatial average of the stress over the total
volume V [9,10]: h�iji �

1
V

R
V �ijdV. After some manipu-

lation it can be shown [9,10] that

 h�iji � 2�eij �
1

V

Z
A
��ikxjnk � ��vinj � vjni��dA:

The second part, which consists in integration over the
vesicle area A, accounts for the vesicle contribution (n is
the normal to the vesicle). This will result in an alteration
of the fluid rheological properties.

Using the solution of the hydrodynamical problem as a
function of the vesicle deformation [4] (as explained
above), the average stress tensor is computed [11]. The
result can be expressed in a compact form: h�iji � �0

ij �

3��Tij, where �0
ij � 2�eij is the stress in the vesicle-free

fluid and � is the volume fraction of the suspension. Tij�t�
enters the coefficients of the pressure field of the Lamb
solution [4] and is the analogue of the shape perturbation
amplitude fij. In particular, Tij�t� can be expressed in
terms of amplitudes of spherical harmonics, as in (2).
The boundary conditions (continuity of velocity and
stresses) link together the unknown coefficients fij, Tij
(and others entering the Lamb solution [4,8]). Writing Tij
in terms of fij (see also [12]), we find

 

�ij
2�
�eij��

�
5

2
�2h

�������
15

2�

s �
eij��h

���������
15�

2

s
96fxyfij

5�
; (5)

where we have dropped the average symbol, and h �
60

��������������
2�=15

p
=�23�� 32�. Note that for a dilute polymer

solution [13], when the polymer is represented by an
elastic dumbbell, the so-called upper convected derivative,
DM=Dt� �rvM�MrvT�, enters the rheological equa-
tion instead of the corotational derivative, obtained here.
This can be traced back to the geometrical nature of the
suspended entities (a quasisphere in the present case, and a
dumbbell in the polymer case).

Equations (3) and (5) summarize the rheological equa-
tions of the composed fluid. In principle fij is determined
from Eq. (3). Plugging the result into Eq. (5) determines
the stress tensor. The equilibrium condition @i�ij � 0
provides us with the closure relation. An important point

is worth mentioning. For droplet [8] and capsule models
[14] the shape evolution equation is, to leading order, apart
from the Jaumann derivative, linear. This markedly con-
trasts with the present situation where the evolution equa-
tion is nonlinear due to local membrane incompressibility.
The nonlinearity results in rich dynamics (as compared to
droplets and capsules) where a tank-treading motion with a
fixed orientation angle may lose stability in favor of tum-
bling via a saddle node bifurcation. In addition, a
vacillating-breathing mode coexists with tumbling [4].
These dynamics strongly impact on the rheological prop-
erties, as seen below.

We determine now the rheological properties and set up
a link between microscopic dynamics and rheology. In the
tank-treading regime Eq. (3) can be solved analytically. We
find a stationary solution given by

 fxy �
1

12h

������������������������������
15��4h2 ���

8�

s
: (6)

This solution exists provided that 4h2 <�. In this
regime the vesicle makes an angle [4]  �  0 �

� 1
2 cos�1�

����
�
p

=2h�with the shear direction, while its mem-
brane undergoes a tank-treading-like motion. Having de-
termined fxy, we are in a position to determine the effective
viscosity by making use of Eq. (5). We find

 �eff � �
�

1�
5

2
���

�������
15

8�

s
�

h

�
; (7)

which extends the famous Einstein [15] result to the case of
vesicles [4].

Let us now turn to the more general case of time-
dependent dynamics. From the above rheological equa-
tions, it is easy to show that the full expression of the
time-dependent effective viscosity �Deff is given by [defined
by �Deff � �xy= _�, with �xy given by (5)]

 

�Deff

�
� 1�

5

2
�
�
1�

4

5

�������
15

2�

s
h
�
�
�
�
h

��������
470

�

s
R2sin2�2 �

where we have expressed the shape function in terms of
spherical harmonics by using the relation F22 � Re�2i ,
where  is the vesicle orientation angle in the flow, and R is
the amplitude of deformation about the sphere [4].

The above expression of dynamical viscosity is valid for
a single vesicle (see below). This computation is instruc-
tive from the conceptual point of view. As an example we
show the orientation angle  and �Deff in the tumbling
regime (Fig. 1). The viscosity shows a nontrivial dynamical
behavior. It exhibits a minimum at  � 0, which is intui-
tive, as the vesicle aligns along the flow. Surprisingly,
another minimum is found at  � �=2. To the understand-
ing of the authors, this is due to the fact that at the same
time the shape elongation is minimal at  � �=2.

To compute the normal stress differences N1 � �xx �
�yy and N2 � �yy � �zz the determination of the diagonal
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elements of fij is required. We obtain from (3)

 fxx � �fyy �
�

48h

������
30

�

s
; fzz � 0; (8)

so that (here we switch to physical variables)

 N1 � �2N2 � � _��

������������������������������
15��4h2 � ��

2�h2

s
: (9)

Here it is also seen that N1 decreases with decreasing h (or
equivalently increasing �). This is valid in the tank-
treading regime. In the time-dependent regime we can
express N1;2 in terms of R and  . A simple conversion of
fij into Fij yields from the full expression (5)

 ND
1 � �2ND

2 �
16� _��

�

���������
15

32�

s
R2 sin�4 �: (10)

Like the viscosity, ND
1 is a nonlinear time-dependent func-

tion of time, as shown in Fig. 1 (lower panel).
What happens to the rheological properties if the tum-

bling boundary in parameter space is crossed? While the
tank-treading motion can be analyzed analytically down to
the tumbling bifurcation, in the tumbling regime it has not
been possible to obtain analytical expressions. We have
thus solved Eq. (3) numerically. For definiteness we fix
� � 1, but the overall qualitative features do not depend
on this choice. As shown above, in the last two regimes�Deff
and ND

1;2 are nonlinear oscillating functions of time. The
instantaneous values of these quantities are of fundamental
interest, since they provide the link between the orientation
and the amplitude deformation and the actual rheological
properties. From the practical point of view the average
quantities over a period are of interest since a realistic

suspension consists of individual vesicles with uncorre-
lated dynamics.

While the tumbling threshold is approached h�Deffi
undergoes a decline. In the tumbling regime �eff exhibits
a sudden increase (Fig. 2). Recalling that the tumbling
threshold corresponds to h �

����
�
p

=2 	 hc, we find from
(7) that for h ’ hc

 

�eff

� 	 1�
5

2
�
�
1�

2

5

���������
15�

2�

s �
��

������
30

�

s
�h� hc�: (11)

From the tumbling side it is seen from Fig. 2 (inset) that
h�Deffi can be fitted with a linear function in terms of hc �
h. Combining this result and the above analytical one, we
can conclude that the viscosity exhibits a cusp singularity,
�eff 
 j�� �cj at the critical viscosity contrast �c at
which tumbling takes place. The same conclusion can be
drawn regarding the VB mode. This singularity is believed
to be a general feature, beyond the small deformation
theory. It reflects the behavior of the fold catastrophe
associated with the tumbling bifurcation. Note that the
VB mode shows a smaller viscosity than the tumbling
one. The tumbling regime possesses a higher viscosity
than the tank-treading one at the same distance from the
bifurcation point. Several remarks are in order. The sudden
increase of h�Deffi in the tumbling regime can be traced back
to the fact that over a period the vesicles scan a larger cross
section against the flow than in the tank-treading regime
and in the VB one. As one moves far into the tumbling
regime the period of rotation becomes smaller and smaller
as compared to _��1, so that on the time scale of the
imposed flow the flow capability is reduced further and
further. The same reasoning holds for the VB mode.

Another important feature is obtained from the analysis
of hND

1 i and hND
2 i, as shown on Fig. 3. Both quantities
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FIG. 2. The reduced average effective viscosity as a function
of h for the various three regimes: tank-treading, tumbling, and
vacillating-breathing (VB). The inset shows a cusp singularity at
the tumbling bifurcation point.
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stress difference (lower panel) in the tumbling regime.
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exhibit a collapse (in absolute values) towards a vanishing
value at the bifurcation point. In the tumbling and VB
regimes N1 and N2 remain very close (up to numerical
accuracy) to a zero value. From the tank-treading side they
exhibit a square root singularity, which is directly con-
nected to the behavior of the orientation angle. Indeed
from (9) it is simple to show that for h ’ hc

 N1 � �2N2 � 2� _��
�
30

�

�
1=2

��1=4�h� hc�
1=2: (12)

Normal stress differences are usually attributed to elon-
gation of the suspended entities along the flow. Here, in the
tumbling regime, there is on average no preferred orienta-
tion of the vesicle, so that the fluid behaves from this
perspective as a Newtonian one.

Note that an experimental study of the rheological prop-
erties requires monodisperse samples by varying the vis-
cosity contrast using dextran solutions (Mader et al. [6]).
Obtaining monodisperse samples by observing the same
excess area is a challenging task in general. Microfluidic
devices [16] constitutes now a promising tool to achieve
this goal.

Several issues deserve future considerations. First, fluc-
tuations of the membrane must be taken into account.
Similarly, an extension of the theory to higher deformation
is needed for the sake of more systematic comparison with
future experiments on rheology. We expect these two
effects to lead to shear thinning, and to a variation of N1

and N2 with the shear rate. However, for a given shear rate,
we expect the overall qualitative features reported in Fig. 1
and 2 unaffected. Second, it has been found here that the
dynamics that prevails can not be explained by a reduction
of the effective viscosity (for example the viscosity in the
tumbling regime may be higher than that in the tank-
treading one).

In summary, a rheological law has been derived that is
distinct from that of droplet and capsule theories, owing to

the membrane inextensibility. This results in a nonlinear
rheological law and a nonlinear shape equation. The non-
linear shape equation triggers bifurcations, and coexistence
of modes, conferring new qualitative features to the present
system. We have set up a link between microscopic dy-
namics and rheology, and have shown that an analysis of
the suspension at the global scale exhibits signatures of the
microscale dynamics. These signatures are accessible ex-
perimentally, and we hope that this work will incite ex-
perimental research along this direction.
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FIG. 3. The first normal stress difference N1 as a function of h
for the various three regimes: tank-treading, tumbling and
vacillating-breathing (VB).
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