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We study the dynamics of a polymer of varying stiffness, pinned or grafted at both ends and subjected to
an oscillatory forcing at an intermediate point. Via stochastic simulations, we find a crossover from a
periodic limit cycle to an aperiodic dynamics as the polymer gets ‘‘stiffer.’’ An analytical argument valid
in the 2D grafted case shows that in such a case this aperiodic dynamics has some chaotic signatures.
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Recent times have witnessed an outburst in the develop-
ment and use of single molecule techniques [1,2]. It is now
possible to study a single molecule with atomic force
microscopes (AFMs), laser tweezers, etc., and to apply a
local force of a prescribed shape ideally at any section of
the polymer under scrutiny. While these experiments are of
interest per se, as they allow precise measurements of
elastic properties of bio- and artificial polymers, they
may also shed light on some in vivo situations in which
cellular machineries or protein complexes exert a localized
force on segments of a biopolymer. A popular example of
this is found in DNA unzipping during replication, in
which helicases bind at the two ends of an ‘‘eye’’ (or
replication bubble) and unwind the DNA locally [3,4].
Other suggestive examples involve DNA transcription,
when RNA polymerases may apply a force to reel in and
transcribe a gene [5], or in cytoskeletal dynamics, as motor
proteins continuously push and pull actin fibers and micro-
tubules [3].

Barring notable exceptions [6,7], theory and experi-
ments have most often focused on equilibrium descrip-
tions. While this is important, there still remain many
interesting but as yet unanswered questions on the dynam-
ics of a single polymer [8].

Here we suggest a possible setup for a single molecule
experiment where we consider a polymer of variable stiff-
ness anchored at both ends and subjected to a periodic
force at an interior point. By monitoring the 3D time
evolution of the polymer chunk under tension via dynamic
Monte Carlo simulations, we predict a crossover from a
periodic limit cycle in the position-force plane, observed
for very flexible chains, to an aperiodic behavior for stiffer
polymers. The shape of this orbit depends on the magni-
tude and periodicity of the forcing. An analytical treatment
of the 2D polymer model grafted at one end, and using the
mapping used in Ref. [9], shows that this system, in the
semiflexible regime, could have a deterministic analogue
with a positive Lyapunov exponent. The different dynami-
cal states we predict may be checked via single molecule
experiments in which the point of application of the force
can be controlled. This would yield time series of the data

analogous to the ones we compute. The polymer needs to
be perturbed with a frequency larger than or comparable to
its inverse relaxation time to observe the phenomena we
predict. Ideal candidate systems to verify our predictions
might thus be long dsDNA molecules or actin or amyloid
fibers (whose relaxation times ranges from milliseconds to
seconds; see the discussion at the end) [1].

We first consider the full 3-dimensional dynamics of a
(strictly inextensible) semiflexible and self-avoiding poly-
mer (of variable stiffness) subject to a time-dependent
force ~f�t� applied at the jth bead of the chain, which is at
~rj, with j � sN, 0< s< 1 (the chain is constituted by N
beads of diameter a joined by N � 1 links of length a—in
what follows, simulation length scales are measured in
units of a). We follow the time evolution of the polymer
via 3-dimensional dynamic Monte Carlo simulations in-
volving the kink-jump algorithm [10]. One Monte Carlo
step (MCS) corresponds to a series of N attempted kink-
jump moves. This method has recently been successfully
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FIG. 1 (color online). Setup of our calculation. A semiflexible
chain pinned at both ends and acted upon by an oscillating force
(a) applied at its midpoint or (b) at a generic point between its
extremities.
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used in a number of contexts [11,12]. It allows only an
indirect mapping to physical times, and it disregards hy-
drodynamic interactions between beads, but it is useful
here as it allows an exact handling of the inextensibility
constraint, as there is no need to introduce soft springs
between monomers. The Hamiltonian H describing the
single molecule setup in which we are interested is H �

Kb
PN�2
i�1

~ti � ~ti�1 � ~f�t� � ~rsN, where Kb � LpkBT is the
bending rigidity (Lp, kB, and T are, respectively, the per-
sistence length, Boltzmann constant, and temperature) and
~ti denotes the ith link (1 � i < N). Results are reported
primarily for pinned boundary conditions. This means that
the first and last beads are constrained to stay at �0; 0; 0�
and �d; 0; 0�, with d < L � Na. For selected cases, we
considered polymers grafted at (i) one end (i � 1) and
(ii) both ends. In these cases, the first and last links were
constrained to lie along the x direction as well. Typical
values for other parameters were L � 100a, d=L � 0:6,
and Lp=L between 0 and 0.2 (results are similar for smaller

d=L). The periodic force along the z direction is ~f�t� �
ẑA cos�2�!t�, where A is the amplitude of the perturbation
(typically 10 kBT=a) and ! � 1=� its inverse period.
Figure 1 shows the setup.

In what follows, time is measured in MCSs. To relate
these observations to physical quantities, we will also
report estimates for the polymer relaxation time �r. Note
that the 3D MC algorithm we use works at a fixed tem-
perature T, implying that, e.g., bead diffusion and friction
cannot be inputted and should be calculated a posteriori.

Figures 2 and 3 show the dynamic trajectories in the
zL=2�t� � z�t�; f�t� plane for a flexible (Fig. 2, variable !)
and a semiflexible (Fig. 3, Lp=L from 0 to 0.1) polymer,

respectively. The flexible polymer parameters may be
mapped onto those of a polyethylene molecule of thickness
	0:5 nm and contour length 50 nm, while the semiflexible
polymer with Lp=L � 0:1 may represent, e.g., a 0:5 �m
long DNA in a 0.1 M NaCl solution (close to physiological
concentration), for which its effective thickness is 5 nm
[13].

We begin with the flexible case. At quasiequilibrium, the
dynamic trajectory of the point of application of a force
f�t� on a polymer along z (!! 0) gives a 1D curve de-
fined by z�t� � @ log
Z��f;d��

@�f , where Z is the partition func-
tion of the system (which depends on d). Figure 2(a) shows
that for �� �r the quasiequilibrium state is recovered. In
Fig. 2, nonequilibrium effects creep in and the quasiequili-
brium line is substituted by a hysteresis [Fig. 2(b)] or a
limit cycle [Fig. 2(c)]. This crossover is due to the fact that
the chain can no longer equilibrate at all times during the
force ramping cycle, as now �	 �r. Thus, the midpoint
position is sampled only on a portion of the phase space,
which yields an under- (over)estimate of its value in the
forward (backward) force scan; hence, hysteresis shows
up. If ! is further increased [Fig. 2(d)], the trajectory
followed by the limit cycle tilts toward the f axis.

The crossover between quasiequilibrium and limit cycle
behavior could be observed in a flexible polymer with L�
Lp. (Suitable candidates for an experiment would be long
dsDNA’s, with L � 50 �m or more, hence essentially
flexible polymers with �r > 1 s.) A stiffer polymer, such
as a relatively short dsDNA or an actin fiber, enhances the
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FIG. 3 (color online). z�t� vs f�t� for a polymer with L �
100a, d=L � 0:6, and variable Lp [respectively, (a) Lp=L � 0,
(b) Lp=L � 0:02, (c) Lp=L � 0:05, and (d) Lp=L � 0:1]. x is
the time-dependent position of the midpoint (at s � L=2).
c�	 3150 MCSs while �r � �a� 2500, (b) 13 500, (c) 67 500,
and (d) 110 000 (in MCSs [20]). z�t� and f�t� are in units of a and
kBT=a, respectively (for DNA in 0.1 M Na� solution, z � 5 nm
and f � 0:8 pN).
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FIG. 2 (color online). Plot of 
�z�t�; f�t�� for a flexible polymer
with 1=2�! equal to (a) 20 000, (b) 1000, (c) 500, and (d) 250
(in MCSs). �r 	 2500 MCSs. z�t� and f�t� are in units of a and
kBT=a, respectively.
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hysteresis. Under such circumstances, we no longer ob-
serve a (noisy) limit cycle, but the trajectories, representing
the motion of the polymer midpoint, now fill the space in
the �z; f� plane.

Figure 3 shows the crossover between these two differ-
ent regimes. The limit cycle behavior typical of the flexible
chain changes over to space filling trajectories for stiffer
semiflexible polymers as we increase Lp=L. This space
filling trajectory can be thought of as the superposition of
several limit cycles, each of which spans only a limited
range in z during a force cycle (forward and backward
scan). This crossover resembles what happens in a
Poincaré section in systems crossing over from a limit
cycle behavior to chaotic dynamics (see, e.g., [14]). As
time progresses, the instantaneous limit cycle at the mid-
point is visiting drifts (along the z axis in Fig. 3), and this
leads to the aperiodicity.

To assess the robustness of our results, we performed
calculations with different boundary conditions, namely,
with polymers grafted at one or both ends. In all cases, a
crossover was found upon increasing Lp at a fixed L. The
crossover value Lp=L is smaller with grafted boundary
conditions (it is ‘‘easier’’ to get into the aperiodic regime
there), while it only weakly depends on chain length over
the values considered (50a < L< 200a for pinned bound-
ary conditions). We have attempted to qualitatively esti-
mate the effect of hydrodynamic interactions, by per-
forming simulations of the same system described by the
potential in Eq. (1) with the stochastic rotation model [15]
(this requires the introduction of soft nonlinear springs
between monomers). While the crossover between a limit
cycle to an aperiodic regime is still observed, our simula-
tions suggest that the crossover occurs for larger Lp and !
than in the 3D MC simulations (the aperiodic zone in the
dynamic phase diagram shrinks due to hydrodynamics).
Details will be presented elsewhere.

To further characterize the aperiodic dynamic regime
observed in a semiflexible polymer, it is instructive to
compare our simulations with a semianalytical treat-
ment. Toward this aim, we focus on a restricted 2D
analysis of a semiflexible polymer grafted along the x
direction and subjected to an oscillating transverse force
at its end along z. Indeed, in 3D, our simulations show
identical physics for grafted chains as in Ref. [16].
For a more rigorous theory, we resort to the theoretical
technique reported in Ref. [9] and derive the Lyapunov
exponent � associated with the dynamics of 2D grafted
polymers. We show that � could be positive, implying that
the observed aperiodic dynamics might have some chaotic
signatures.

On general grounds, we may write the following equa-
tion for the coarse-grained tip dynamics:

 _z�t� � ��
�

�z�t�

kBT logP�z�� � f�t� � ��t�; (1)

 P�z� �
Lp

���
3
p

�L2

Z 1
1
d� exp

�
�
Lp�

2

2L

�

� exp
�
�

6Lp
z� sin�L�2

L3

�
; (2)

where � denotes a functional derivative, the form of the
transverse tip probability distribution P�z� [whose loga-
rithm defines �F �z�=kBT, F �z� being the free energy
which governs the tip dynamics] is borrowed from
Ref. [16], � is a suitable relaxation time, and � is a random
noise whose 2-point correlation is h��t���t0�i � 2���t�
t0� (�> 0 gives the strength of noise, which we do not
assume is fixed by the fluctuation-dissipation theorem as
the system may be out of equilibrium, as in the simulations
in Figs. 2 and 3). We set � � 1, which is tantamount to a
rescaling of time.

The dynamics originating from Eq. (1) can be studied
with the methods of Ref. [9] which lead to the following
estimate for the largest � of the dynamical system equiva-
lent to ours (we assume that there exists one):

 � �
1

2

Z
d�0h	��0�	��� �0�i cos2!�0; (3)

where we have defined 	�t� � F 00�z� [9].
For an exact evaluation of the Lyapunov exponent, we

need a numerical solution for the tip dynamics as per
Eq. (1). However, it is instructive to find an approximate
semianalytical estimate. To this end, we evaluate F �z� and
fit it to the two-state function f�z� � f0 � a�z=L�4 �
b�z=L�2 (a; b > 0). We can now directly use results from
Ref. [9] to find the following approximated value for the
largest Lyapunov exponent:

 � �
9

8

�
1�

a�

b2

�
2

���
b
p
�1� b

4a�


1� b�1� b
4a�

2�
; (4)

where b�Lp=L� and a�Lp=L� are to be found numerically.
The value of � obtained through Eq. (4) is approximate;
e.g., it vanishes only for Lp=L < 0:25, whereas a numeri-
cal estimate predicts this ratio as 0.4.
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FIG. 4. Plot of (a) b (whose sign determines whether the
effective potential is a single or a double well) and (b) �, as a
function of Lp=L for L � 100a and � � 0:1, using Eq. (6). (�
was not fixed by the fluctuation-dissipation theorem, as the
system may be out of equilibrium.)
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Figure 4 compares the analytical approximation and
numerical estimate for the Lyapunov exponent of a grafted
polymer. The figure shows an increasing � with stiffness, a
result reminiscent of our simulation. Interestingly the
semianalytical treatment also predicts a vanishing � for
large Lp=L. Our analysis highlights the physical origin of
the onset of chaotic signatures in grafted semiflexible
polymers of intermediate stiffness. As shown in Ref. [16]
and as is apparent from Eq. (1) and its approximation, in
2D the distribution probability of the tip position of a
grafted semiflexible polymer is bimodal for intermediate
stiffness. Hence, the effective free energy governing the tip
dynamics (in the close-to-equilibrium regime) is perhaps
the simplest paradigm leading to chaotic motion (in the
weak damping and deterministic limit, this is the well
known Duffing oscillator [14]). Our simulations are in
3D and include pinned as well as grafted boundary con-
ditions, but it is reasonable to postulate that the aperiodic
dynamics we observe is qualitatively given by the same
physics leading to chaos in the above calculation.

Is the crossover from limit cycle to aperiodic dynamics
observable with a state-of-the-art single molecule experi-
ment ? To this end, we propose a controlled force experi-
ment. The force needs to cycle between �A and A, with a
frequency increased up to a value >��1

r . An AFM force
clamp needs 	ms feedback to work, while it can provide
forces up to nN at a resolution of 5–10 pN, thereby limiting
its applicability to the low force regime [17] (a laser
tweezer would provide more stringent constraints but offer
a resolution up to	0:1 pN). �r can be accurately estimated
via the modified Rouse theory reported in Ref. [18] [Eq. (5)
of that work]. For a short dsDNA [as in Fig. 3(d)], an actin
fiber (L	 2 �m, Lp 	 17 �m, a	 5 nm), and an insulin
amyloid fiber (L	 10 �m, Lp 	 7 �m, a	 5 nm [19]),
in an aqueous solution, �r 	 0:2 ms, 1 s, and 10 s, respec-
tively. Additional simulations suggest that A	 tens of pN
suffices to enter the aperiodic regime in all cases.
Therefore, we suggest that our predictions may be testable
with actin or insulin fibers in an AFM force clamp (possi-
bly the insulin fiber experiment can be done using laser
tweezers).

In conclusion, we have studied the dynamics of a semi-
flexible polymer grafted or pinned at its ends and subject to
a periodic forcing acting on one of its beads. The time
series of the process retain strong signatures of nonequi-
librium effects. In particular, we observe a crossover from
a limit cycle behavior, which reflects the hysteresis inher-
ent to the process, to an aperiodic behavior. A semianalyt-
ical approximation shows that for 2D grafted polymers this
aperiodic regime has some chaotic signatures as the largest
Lyapunov exponent of its ‘‘equivalent’’ (in the sense of [9])
deterministic system is positive. This ‘‘chaotic’’ signature
in the dynamics, at least in part, originates from nontrivial
features in the tip distribution probabilities. We hope our

studies will stimulate experiments to test the existence of
this crossover in the kinetics of a single polymer.
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