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Time-resolved scanning Kerr effect microscopy has been used to study magnetization dynamics in
Permalloy thin films excited by transient magnetic pulses generated by a micrometer-scale transmission
line structure. The results are consistent with magnetostatic spin wave theory and are supported by
micromagnetic simulations. Magnetostatic volume and surface spin waves are measured for the same
specimen using different bias field orientations and can be accurately calculated by k-space integrations
over all excited plane wave components. A single damping constant of Gilbert form is sufficient to
describe both scenarios. The nonuniform pulsed field plays a key role in the spin wave dynamics, with its
Fourier transform serving as a weighting function for the participating modes. The intrinsic Gilbert
damping parameter � is most conveniently measured when the spin waves are effectively stationary.
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Interest has been growing for many years in the time-
domain investigation of magnetization dynamics in re-
sponse to a short magnetic pulse. An impulse excitation
is broadband, but the dynamics of the magnetic system are
also very sensitive to the parameters of the excitation pulse.
Time-domain pulse shaping can eliminate ringing for a
coherently switched ferromagnetic element, to greatly en-
hance the performance for applications [1,2]. In addition,
the spatial profile of the pulsed field is critical in dictating
the magnetic dynamics. Magnetostatic spin waves gener-
ated by such nonuniform transient field have been observed
in a number of time-resolved optical [3] and inductive [4,5]
experiments, and also in frequency-domain studies [6].
The resulting position-dependent temporal response cre-
ates additional challenges for characterizing the dynamics
and for determining the intrinsic magnetic damping. The
focus of the present Letter is to address these difficulties
within a simple physical framework.

Under the condition of linear behavior of the spin wave
dynamics in the low amplitude regime [4,5], the magnetic
response is the linear superposition of all plane wave
components that can be excited by the pulse. Assuming
the spin waves propagate only along the x direction [the
coordinate system is defined in Fig. 1(a)], the out-of-plane
component of magnetization can be described by

 Mz�x; t� � e�t=�
Z kc

0
P�k;!�k�� sin�kx�!�k�t���dk;

(1)

where ��1 is the inverse decay time, !�k� is the dispersion
relation, and P�k;!�k�� is the spectral density of the pulse
field determined from its spatial and temporal profiles and
acts as a relative weighting factor for the different spin
wave components in k space. The influences of the pulse
field parameters, the intrinsic damping, and the dispersion
relation of the spin waves are contained explicitly. kc is a

cutoff wave number for numerical integration (kc �
5 �m�1 is sufficient for the magnetostatic regime with
the stripline dimensions used here). The initial phase angle
� is taken to be independent of frequency on account of the
pulse excitation. The longer trailing edge of the pulse
causes a nonoscillatory quasistatic background that is not
included in Eq. (1), but in actual calculations we take the
pulse shape into account by fitting the high-frequency data
[7].

The experimental geometry is shown by the inset sche-
matics in Fig. 1. A Ni80Fe20 film (Permalloy, or ‘‘Py’’),
with thickness d � 10� 1 nm, is deposited on a 150 �m
thick glass substrate using e-beam evaporation. The film is

 

FIG. 1. Different damping behavior of local magnetization
under nonuniform excitation. The coordinate system is defined
in (a) and is the same throughout the Letter. The parallel
rectangular bars represent the stripline structure and the black
dots represent the probe points (not to scale). The relation
between the wave vector and the bias field is shown in each
panel. The solid curves are measured Mz�t� traces, the crosses
are calculated results based on Eq. (1), and the open circles are
simulated results using the quasi-1D LLG model [21].
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then clamped on a copper thin film-stripline, with a small
amount of high-vacuum dielectric grease applied for a
strong surface-tension bond and to ensure electrical iso-
lation between Py and Cu. Two coplanar wires in the
stripline structure transmit a current pulse (rise time
<20 ps at the sample) from a semi-insulating GaAs photo-
conductive switch (carrier lifetime 	300 ps) and generate
a nonuniform magnetic pulse h�x; t�. The width and sepa-
ration of the wires are both 3 �m and are much smaller
than the length (	400 �m), and the system can be treated
as quasi-one-dimensional. The pulse field amplitude (and
corresponding initial torque) decreases quickly away from
the wires, falling to less than 10% of the peak value beyond
jxj � 8 �m for the experimental geometry. We define the
region of the Py film enclosed by these boundaries as the
‘‘source’’ area. An in-plane bias field H0 saturates the
magnetization of the Py film such that M0 is parallel to
H0. This layout fixes the directions of the wave vectors k to
be parallel to x axis, and enables us to detect different spin
wave modes by changing the direction of H0 (M0). The
focus here is on the special cases of k kM0 and k ?M0,
although other angles can be similarly addressed [8].
Changes of Mz are measured by means of time-resolved
scanning Kerr effect microscopy [9]. This technique offers
	500 nm spatial resolution determined by the spot size of
the focused probe beam (much smaller than typical spin
wave length encountered in this Letter), and introduces a
versatility relative to the pulsed inductive method, whose
spatial resolution is limited by fixed-position, micrometer-
size probe devices, and suffers a loss of signal when the
magnetization is perpendicular to the wires. The optical
approach allows a direct determination of a variety of spin
wave dispersion laws.

Quasi-1D micromagnetic modeling was also carried out
in order to benchmark the k-space calculation. The mag-
netic film was discretized along the x direction, such that
the ‘‘finite elements’’ were 10 nm in both x- and
z directions, while infinitely long in y direction. The spin
motion of each element obeys the Landau-Lifshitz-Gilbert
(LLG) equation [10]:

 

dM
dt
� ��0M
Heff �

�
Ms
M


dM
dt

; (2)

where �0 � 17:61 MHz=Oe is the gyromagnetic ratio,
Ms � 760 emu=cm3 is the saturation magnetization of
the Permalloy film, and � is the Gilbert damping parame-
ter. Heff is the effective field mainly contributed by the
external field and the magnetostatic field. The exchange
interaction is found to be insignificant in the magnetostatic
regime [4,11]. The implementation of the simulation fol-
lows standard procedures [10–12].

Figure 1(a) shows the typical response of Mz, in the k k
M0 geometry, with H0x � 200 Oe. The solid curve is a
measurement at x � 0, and other positions show almost the
same profile but with amplitude decrease with increasing x.
The damping is spatially uniform and not influenced by the

propagation of spin waves [13,14], consistent with expec-
tation for k kM0. This geometry exhibits magnetostatic
backward volume waves with a dispersion law [15]:

 !2 � !2
H �!H!M�1� e

�kd�=kd; (3)

where !H � �0H0, !M � 4��0Ms. For the present ex-
periments, the group velocity vg �

d!
dk is on the order of

0:1 �m=ns and the spin waves are effectively stationary
over the time scale of the measurement. The calculated
waveform based upon Eq. (1) is plotted by the crosses in
Fig. 1(a), and agrees well with the measured data. To
determine the weighting function P�k;!�k��, a standard
linearization analysis is applied on Eq. (2) [16] to give
Mz � �!M!H=�!2

H �!
2��h�!�hz�k�, where h�!� and

hz�k� are the Fourier transformation of h�t� and hz�x�,
respectively. The !-dependent quantities are found to be
insignificant in the calculations (except for a negative sign
if !>!H), so the weighting function can be approxi-
mated by P�k� � jhz�k�j. The Biot-Savart law was used
to calculate the in-plane (hx) and out-of-plane (hz) compo-
nents of the excitation field. The spatial distributions of hx
and hz depend on the distance � between the plane of the
Py film and the plane of the stripline. � cannot be precisely
measured here and is used as a fitting parameter. In this
nearly stationary case, magnetic damping of the system is
unambiguously determined by the exponential decay time
� in Eq. (1), and can be measured directly from the
logarithm of the decreasing amplitude of the experimental
waveform; the result for Fig. 1(a) is � � 1:40� 0:01 ns.
On the other hand, the Gilbert damping parameter � can be
independently fitted by micromagnetic simulations based
solely on the LLG equation; the result for this case is � �
0:0081� 0:0003, and the simulated waveform is plotted
by open circles in Fig. 1(a), in excellent correspondence
with the measurement and the k-space calculation. The two
damping parameters are related by � � ���0�2�Ms �
H0��

�1 [16], and our results obtained by independent fit-
tings are consistent with this relation.

Good agreement between the measurements, k-space
calculations, and quasi-1D simulations are again obtained
in the k ?M0 geometry, as shown in Figs. 1(b)–1(d) for
the probe positioned at x � 0 and H0y ranging from 110 to
300 Oe. In this geometry magnetostatic surface waves
(MSSW) are the dominant modes, leading to qualitatively
different spatiotemporal dynamics in the Py film. For the
k-space calculations, the dispersion law of MSSW [16–18]

 !2 � �!H �!M=2�2 � �!M=2�2 exp��2kd� (4)

is used to calculate Mz�x; t� using Eq. (1). Linear response
theory for the surface modes yields Mz � �!M=�!2

H �
!2��h�!��!Hhz�k� � i!hx�k��, that is, the out-of-plane
magnetization responds to both in-plane and out-of-plane
pulse fields. In the present Letter !H � !, the contribu-
tion of hz is small and the weighting function again can be
approximated by P�k� � jhx�k�j [19] (the ! dependence is
neglected as in the k kM0 case). The Mz�t� traces show
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significantly shortened decay time [compare Fig. 1(b) to
Fig. 1(a)], since the excited surface modes possess fairly
large group velocity to transfer the nonequilibrium spin
wave energy out of the probed position. At x � 0, the
decay time shown in Figs. 1(b)–1(d) does not change
explicitly when H0y decreases (which leads to increasing
group velocity), but after we average Mz�x; t� over jxj �
8 �m, the decay time in the whole source area indeed
decreases with larger group velocity, as expected (results
not shown). In other words, the damping behavior in
MSSW configuration cannot be quantitatively described
by single-point measurements, but has to be analyzed using
the global approaches (scanning probe experiment, micro-
magnetic simulation, and k-space calculation). The damp-
ing behavior is naturally embedded in Eq. (1), because of
dephasing of the component frequencies through the !�k�t
term. Equation (1) is a generalization of the formula pro-
posed in Ref. [4], which gives an intuitive description of
the phenomenon. The damping envelope is jointly deter-
mined by a Gaussian term accounting for spin wave dis-
persion, and the intrinsic exponential decay. Our general
approach works for both k kM0 and k ?M0 geometries,
and explains why the decay remains exponential when the
spin wave propagation is negligible.

In the k ?M0 geometry, individual wave packets prop-
agating in the x direction can be observed when Mz�t� is
measured outside the source area (i.e., the probe point
moves away from the stripline). Representative results
for the case of H0y � 80 Oe are shown in Figs. 2(a)–
2(d). Recording a two-dimensional (position and time)
map for the peak of the wave packet, its group velocity
can be determined to be 4:8� 0:5 �m=ns. Performing
such analysis for a range of bias fields yields the group
velocity as a function of frequency, as shown in Fig. 2(e).
The measurements and numerical calculations agree rea-
sonably well with the MSSW theory [vg determined from
Eq. (4)].

For the propagating wave packet discussed above, the
Mz�t� is asymmetric in time (the increase of the oscillation
amplitude appears ‘‘slower’’ than the following decline).
This asymmetry is especially apparent in Figs. 2(c) and
2(d), but again is well reproduced by the k-space calcula-
tion based on Eq. (1) (and which cannot be achieved by the
Gaussian-type formula in Ref. [4]). This is shown by the
crosses in Figs. 2(a)–2(d), and is also supported by the
quasi-1D simulations (open circles). A single scale factor
fits the measured amplitude at all positions in the consid-
ered range, indicating that the Gilbert mechanism (� �
0:0081 is still used here [20]) also accounts for the spin
wave attenuation during propagation [4,13]. Measure-
ments of this attenuation are potentially an effective way
to determine � when k ?M0.

The temporal profile of Mz�t� ultimately stems from the
spatial profile of the excitation field, which directly deter-
mines P�k� in Eq. (1). Figure 3 illustrates the effect of
different distributions P�k�, calculated for several values of

the film-stripline gap �. As � increases, the spatial varia-
tion of the pulse field becomes smoother and P�k� acquires
relatively higher spectral density at smaller k [Fig. 3(a)].
This yields relatively larger oscillation amplitude at early
times before the wave packet peaks, and can be understood
here as a consequence of more spin wave components with
higher phase velocity vp �

!
k . Figures 3(b)–3(d) show the

bracketing of the ‘‘best-fit,’’ � � 1:6 �m, to the experi-
mental data as presented in Fig. 2(d).

As the spin wave packet propagates farther away from
the source, its shape is gradually broadened and the peak
time eventually exceeds the maximum optical delay of the
apparatus (5 ns). In this situation, the oscillations are
dominated by small-k components. The experiments yield
a unique position at each bias field (x	 30 �m for the case
of H0y � 80 Oe) where the incoming energy from the
propagating mode effectively balances the intrinsic dissi-
pation at that position, such that a nearly time-independent
oscillation amplitude is observed throughout the measure-

 

FIG. 2. Propagation of a spin wave packet in the k ?M0

geometry. (a)–(d): Mz�t� traces at x � 10, 12.5, 15, and
17:5 �m, respectively, when H0y � 80 Oe. The solid curves
represent the measured data, which are extracted from a single
spatiotemporal scan, the crosses are the calculated results based
on Eq. (1), and the open circles are the simulated results using
the quasi-1D LLG model. The simulated and calculated wave-
forms are scaled to the same amplitude as the experimental data.
(e): Group velocity of MSSW modes as a function of oscillation
frequency, with H0y ranging from 30 to 300 Oe. The black dots
are measured data, and the crosses are results from quasi-1D
simulations. The gray shadow is the theoretical curve calculated
from MSSW dispersion law [Eq. (4)], with the width reflecting
its lower and upper limits due to the uncertainty in the cutoff
wavelength and film thickness (k � 0	 5 �m�1 and d � 9	
11 nm).

PRL 98, 087201 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007

087201-3



ment window, as shown in Fig. 4(a). For larger x, the power
balance is broken and the intrinsic decay of the long-
wavelength oscillations dominates [Fig. 4(b)].

In summary, we have studied the spatiotemporal dynam-
ics of a ferromagnetic film in response to a short magnetic
pulse localized in one spatial dimension. The response can
be interpreted as a superposition of plane waves modulated
by the spectral densities of the spatially nonuniform, tran-
sient excitation field, and decaying according to intrinsic
Gilbert damping. Magnetostatic volume modes and surface
modes can be self-consistently described within this inter-
pretation, and the experimental and analytical results show
good agreement also with micromagnetic simulations. The
Gilbert damping parameter could be directly measured
from broadband ferromagnetic resonance waveforms
when the spin waves are effectively stationary. The
k-space calculations also require negligible computer re-
sources in comparison to micromagnetic simulations, and
offer an opportunity to invert the problem and design
magnetic waveforms for applications. In addition, the
analysis can be extended to a second dimension to account

for thicker or multilayered structures, or for 2D spin wave
propagation.
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FIG. 4. Spin wave oscillations measured at (a), x	 30 �m
and (b), x	 35 �m. The experimental conditions are the same
as those in Figs. 2(a)–2(d).

 

FIG. 3. Influence of the spatial distribution of the pulse field.
(a), Calculated distributions of normalized P�k� for � � 0:5 �m
(dotted curve), � � 1:6 �m (solid curve), and � � 2:5 �m
(dashed curve). (b)–(d), Mz�t� traces at x � 17:5 �m calculated
with Eq. (1), using � � 0:5 �m, � � 1:6 �m, and � �
2:5 �m, respectively.
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