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The optical Hall conductivity and the polar Kerr angle are calculated as functions of temperature for a
two-dimensional chiral px � ipy superconductor, where the time-reversal symmetry is spontaneously
broken. The theoretical estimate for the polar Kerr angle agrees by the order of magnitude with the recent
experimental measurement in Sr2RuO4 by Xia et al. [Phys. Rev. Lett. 97, 167002 (2006)]. The theory
predicts that the Kerr angle is proportional to the square of the superconducting energy gap and is
inversely proportional to the cube of frequency, which can be verified experimentally.
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Xia et al. [1] recently reported experimental observation
of the polar Kerr effect in the superconducting state of
Sr2RuO4. In the absence of an external magnetic field,
reflected light shows rotation of polarization, which is a
clear signature of the spontaneous time-reversal-symmetry
breaking in the superconducting state [2]. Previous muon
spin relaxation measurements [3] suggested the time-
reversal symmetry is broken in Sr2RuO4, but the polar
Kerr experiment [1] gives a much more convincing evi-
dence for this remarkable effect.

Sr2RuO4 consists of weakly coupled two-dimensional
(2D) metallic layers. It was proposed theoretically that the
superconducting pairing in this material is spin-triplet [4]
and has the chiral px � ipy symmetry [5]. Such an order
parameter breaks the time-reversal symmetry and is analo-
gous to the 2D superfluid 3He-A [6]. There is substantial
experimental evidence in favor of the spin-triplet and odd
orbital symmetry of the superconducting pairing in
Sr2RuO4 [7], which includes measurements of the spin
susceptibility [8] and the Josephson effect [9] (see, how-
ever, an alternative interpretation [10]). On the other hand,
the chiral character was not so well established experi-
mentally (see Ref. [11] for interpretation of tunneling
measurements).

Although the experimental demonstration [1] of the
spontaneous polar Kerr effect is very convincing, a theory
of this effect for chiral superconductors is not well devel-
oped. Theories [12,13] concluded that there is no chiral
term in the single-particle response of a px � ipy super-
conductor, although Fig. 1 of Ref. [12] shows a nonzero
Kerr effect for a different state, and Ref. [13] found some
chiral response from collective excitation. On the other
hand, Ref. [6] obtained the intrinsic quantum Hall effect
in the single-particle response of a px � ipy superconduc-
tor, which was then studied in much detail in Ref. [14].
Following Refs. [1,12,15], the polar Kerr angle �K can be
expressed in terms of the imaginary part of the ac Hall
conductivity �00xy��� at a frequency �

 �K �
4�

n�n2 � 1��d
�00xy���; (1)

where n is the refraction coefficient. We write Eq. (1) in
terms of the 2D Hall conductivity �xy per one layer, which
is related to the 3D one via the interlayer distance d. The
natural dimensional scale for the 2D �xy is e2=h.

In this Letter, we calculate the ac Hall conductivity
�xy��� at a finite frequency � as a function of temperature
T for a px � ipy superconductor. We generalize the
method of Refs. [6,14] and obtain the Chern-Simons-like
term in the effective action at finite T and �. In the
intermediate calculations, we set the Planck constant to
unity @! 1, but restore it in the final results. The
Lagrangian of electrons L � i@t �H (where H is the
Hamiltonian) for the 2D px � ipy superconductor has the
form [6]

 L �
i@t � r

2=2m�� i�r ���� � r�=2
i�r ��� ��� � r�=2 i@t � r2=2m��

� �
:

(2)

Here @t and r � �@x; @y� represent time and space deriva-
tives, m and � are the mass and the chemical potential of
the electrons. We assume the parabolic dispersion law
"�p� � p2=2m��, where p � �px; py� is the electron
momentum. The superconducting order parameter is � �
�xx̂� i�yŷ, where x̂ and ŷ are the unit vectors in the x and
y directions. Because of the square symmetry in Sr2RuO4,
we have �x � �y, but it is convenient to label the two
components of � differently for the clarity of calculations.
In momentum representation, Eq. (2) can be written as

 L � i!� "�p��3 � px�x�1 � py�y�2; (3)

where the Pauli matrices � act on the spinor [ �p�,
 ���p�] consisting of the particle and hole operators.
We do not write the spin indices of electrons explicitly.
The two spin components give the same contributions to
the Hall conductivity, so the final results should be multi-
plied by 2. However, by introducing electron and hole
operators, we artificially doubled the number of compo-
nents, so the final result should be divided by 2 [6]. Thus,
we can obtain the correct result by considering just one
spin component, as implied in Eq. (3). In Eq. (3), we use
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the Matsubara frequency i!, because we will be doing
calculations at a finite temperature. From Eq. (3), the
Green function of electrons G � L�1 is

 G� ~p� � �
i!� "�p��3 � px�x�1 � py�y�2

!2 � E2�p�
; (4)

where ~p � �!;p� is the three-component frequency-

momentum vector, and E�p� �
�����������������������������������������������
"2�p� � p2

x�
2
x � p

2
y�

2
y

q
is the electron dispersion in the superconducting state.

To calculate an electromagnetic response of the system,
we introduce the electromagnetic potentials ~A �
�A0; Ax; Ay� by using the long derivatives �ir� eA=c
and �i@t 	 eA0 in the diagonal terms of Eq. (2), where e
is the electron charge, and c is the speed of light [6]. We
also assume that the superconducting order parameter has a
space-time-dependent phase ’, so that it can be written as
� � ei’�0, where �0 is uniform with the real �x and �y.
We will see that the effective action depends only on
gradients of ’. To the first order in ~A and ’, we find the
following addition to the Lagrangian:

 � �
�eA0 � i

eA�r
mc � r��0’�’�0�r

2
r���

0’�’��
0�r

2 eA0 � i
eA�r
mc

 !
: (5)

The Fourier transform of Eq. (5) can be written as

 ���eA0�3�eA �p=mc�’px�x�2�’py�y�1: (6)

Here the variables ~A and ’ are assumed to be functions of
the Fourier variable ~q � ��; qx; qy�. Thus, the vertex
�� ~q; ~p� (6) is a function of two vector arguments.

The effective action of the system to the second order in
� is

 S �
1

2

X
~q; ~p

Tr�� ~q; ~p�G� ~p� ~q=2���� ~q; ~p�G� ~p� ~q=2�: (7)

Substituting Eqs. (4) and (6) into Eq. (7), we write S in the
form

 S �
X
~q; ~p

C1

C2
; (8)

where the denominator is
 

C2 � 
�!��=2�2 � E2�p� q=2��

� 
�!��=2�2 � E2�p� q=2��; (9)

and the numerator is

 

C1 �
1
2 Tr
�eA0� ~q��3 � epxAx� ~q�=mc� epyAy� ~q�=mc� ’� ~q�px�x�2 � ’� ~q�py�y�1�
i�!��=2� � "�p� q=2��3

� �px � qx=2��x�1 � �py � qy=2��y�2�
�eA0�� ~q��3 � epxAx�� ~q�=mc� epyAy�� ~q�=mc

� ’�� ~q�px�x�2 � ’�� ~q�py�y�1�
i�!��=2� � "�p� q=2��3 � �px � qx=2��x�1 � �py � qy=2��y�2� (10)

The calculation of the effective action (7) is conceptually
similar to the calculation of electromagnetic response in
the BCS theory of superconductivity [12,16]. However, we
focus only on obtaining the Chern-Simons-like term re-
sponsible for �xy [6,14]. Picking the A0 term from the first
factor in Eq. (10) and the Ax or Ay term from the third
factor, we obtain a nonzero contribution after taking trace
over the � matrices. The same procedure works for the Ax
or Ay term from the first factor and the A0 term from the
third factor. Combining these terms and changing the
variable of integration ~q! � ~q in the latter term, we obtain
one contribution to C1

 C�a�1 � A0� ~q�
�qyAx�� ~q�p
2
x � qxAy�� ~q�p

2
y�

2i�x�ye2

mc
:

(11)

In deriving (11), we omitted the terms proportional to the
product pxpy, which would vanish after integration over px
and py. The integration over momentum p in Eq. (8) is
concentrated near the Fermi surface, so we can replace
p2
x ! p2

F=2 and p2
y ! p2

F=2 in Eq. (11), because p2
x �

p2
y  p2

F. Making the Fourier transform of Eq. (11) to
the coordinate space, we find

 C�a�1 � A0�@yAx � @xAy�
�2

0e
2

mc
; (12)

where �0 � �xpF � �ypF is the energy gap at the Fermi
level.

In addition, picking the last two terms in the first factor
in Eq. (10) and the Ax and Ay terms in the third factor or
vice versa, we obtain another contribution to C1:

 C�b�1 � i�’� ~q�
�qyAx�� ~q�p
2
x�qxAy�� ~q�p

2
y�

�x�ye

mc
:

(13)

Replacing the Matsubara frequency by the real frequency
i�! � in Eq. (13) and Fourier-transforming to the coor-
dinate space, we find

 C�b�1 � @t’�@yAx � @xAy�
�2

0e
2mc

: (14)

Combining the contributions (12) and (14) to C1 and sub-
stituting into (8), we find a Chern-Simons-like term in the
effective action [6,14]

 SCS � �xy
Z
dt dx dy�A0 � @t’=2e��@yAx � @xAy�=c;

(15)

where
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 �xy �
�2

0e
2

m

X
~p

1

C2
(16)

is the effective Hall conductivity. Indeed, taking the varia-
tional derivative of Eq. (15), we find electric current

 j � c
�SCS

�A
� �xy

�
E�

1

2e
@t

�
r’�

2e
c
A

��
� ẑ; (17)

where E � �rA0 � @tA=c is the electric field, and the
last term in Eq. (17) is proportional to the time derivative of
the London supercurrent js � ��se=2m�
r’� �2e=c�A�.
Obtaining a self-consistent equation of motion for the
superconducting phase ’ is a complicated problem [17].
However, one may argue that the supercurrent contribution
in Eq. (17) is ineffective at high frequencies, so the last
term can be omitted, and we obtain the standard relation
for the Hall conductivity j � �xyE� ẑ. The Chern-
Simons-like term (15) was derived in Ref. [6] at T � 0
and in Ref. [14] near Tc via the Ginzburg-Landau expan-
sion. Notice that is does not have the component Ax@tAy,
which is present in the standard Chern-Simons term
��	
A�F	
. Nevertheless, Eq. (15) is gauge invariant, be-
cause the gauge transformation of A0 in the first factor is
compensated by transformation of the superconducting
phase ’, and the last factor is manifestly gauge invariant
[6].

Now we substitute Eq. (9) into Eq. (16) and derive an
explicit expression for the Hall conductivity. To obtain
optical response at a finite temperature, we do analytical
continuation from the Matsubara to real frequencies, which
is well known in the BCS theory [16]. We take the limit
q! 0 while keeping finite frequency, as appropriate for
optical response, and find
 

�xy��� �
e2�2

0

8�

Z 1
�1

d"
1� 2n�E=T�

E2

�

�
�

1

�� i�� 2E
�

1

�� i�� 2E

�
; (18)

where E �
������������������
"2 ��2

0

q
, n�E=T� is the Fermi distribution

function, � is the real frequency, � is a relaxation rate,
and we replaced the integration over dpxdpy=�2��2m by
the integration over d"=2�. First we take the dc limit �!
0 at zero temperature T ! 0 in Eq. (18) and find

 �dc
xy �

e2

4�
�
e2

2h
; (19)

where we restored the dimensional factor @ � h=2� in the
denominator. Equation (19) demonstrates the half-integer
quantum Hall conductivity in agreement with Ref. [6]. As
discussed in Ref. [14], it is difficult to measure the dc Hall
conductivity experimentally because of screening by
supercurrents.

At a finite temperature T, the dc Hall conductivity
�dc
xy�T� � �e

2=2h�fd�T� is reduced by the factor

 fd�T� �
�2

0

2

Z 1
�1

d"
1� 2n�E=T�

E3=2
: (20)

The factor fd�T� interpolates between 1 at T � 0 and 0 at
T � Tc and behaves as fd�T� / � /

���������������
Tc � T
p

near Tc. The
same factor (20) describes temperature dependence of the
quantum Hall effect in the magnetic-field-induced spin-
density-wave (FISDW) state of the quasi-one-dimensional
organic conductors �TMTSF�2X [18,19]. Equation (20)
represents the dynamic limit of the dc electromagnetic
response [18,19]. If the limit �! 0 is taken in Eq. (16)
first and then q! 0, that would generate the static limit
fs�T� for the reduction function, which has the same
temperature dependence as the London superfluid density
�s�T�, particularly fs�T� / �2 / �Tc � T� near Tc (see
discussion in Sec. VI of Ref. [19]). Ref. [14] obtained the
static limit for �dc

xy near Tc by doing the Ginzburg-Landau
expansion.

Now we calculate the imaginary part of the Hall con-
ductivity �00xy��� at a high-frequency �� �0. One con-
tribution originates from the pole at � � 2E in Eq. (18).
This term represents creation of an electron pair above
the energy gap �0 or a hole pair below the gap by absorp-
tion of a photon with the frequency �. By integrating over
"  	E in the vicinity of the resonance, we find

 �00xy��� �
e2�2

0

2�2 �
e2

2@

�
�0

@�

�
2
: (21)

Calculating this term, we set E2 � ��=2�2 in the denomi-
nator of the first factor in Eq. (18) and put n�E=T� � 0,
because �� T. We observe that Eq. (21) does not depend
on the relaxation rate � and is reduced relative to Eq. (19)
by the factor ��0=@��2=2�. The temperature dependence
of �00xy��� is given by �2

0�T�.
There is another contribution to the integral (18) origi-

nating from the peak in the density of states at E  �0. By
changing the variable on integration from " to E, we
rewrite Eq. (18) as follows:

 �xy��� � �
e2�2

0

�

Z 1
�0

dE
1� 2n�E=T�������������������
E2 � �2

0

q
�

1

��� i��2 � 4E2 : (22)

Integral (22) over dE is logarithmic between �0 and �. For
simplicity, we consider low temperatures, where n�E=T� 
0, and find the following contribution ~�xy to the Hall
conductivity
 

~�xy���  �
e2

�
�2

0

��� i��2
ln
�

�

�0

�
;

~�00xy���  �
4e2

h
�2

0@�

�@��3
ln
�
@�

�0

�
:

(23)

Equation (23) is reduced relative to Eq. (21) by the factor
�=� and is enhanced by the factor ln�@�=�0�. Using the
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numbers from Ref. [1] and given below, we conclude that
the reduction of Eq. (23) is much greater than the enhance-
ment, so we focus only on Eq. (21).

Substituting Eq. (21) into Eq. (1), we find the Kerr angle

 �K �
2�

n�n2 � 1�

e2

d
�2

0

�@��3
�

�

n�n2 � 1�



d

�2
0

�@��2
; (24)

where � � e2=@c � 1=137 is the fine structure constant,
and 
 is the wavelength of light. Using the interlayer
distance d � 1:3 nm [7] and the values n�n2 � 1� � 3
and 
 � 1550 nm from Ref. [1], we find that the first
two factors in Eq. (24) give 2.9. Using the BCS formula
�0 � 1:76kBTc � 0:23 meV for Tc � 1:5 K [1] and
@� � hc=
 � 0:8 eV, we find that the last factor in
Eq. (24) is ��0=@��2 � 8� 10�8. The resultant Kerr
angle (24) is �K � 230 nanorad. This estimate is 3.6 times
greater than the experimentally observed value of 65 nano-
rad [1]. The experimental Kerr angle may be reduced
relative to the theoretical estimate for variety of reasons.
For example, the effective value of �0 at high energies may
be lower than at the Fermi level. We conclude that the
theoretical formula (24) reasonably agrees with the experi-
ment by the order of magnitude.

A different theoretical formula with �K / �0 was pro-
posed phenomenologically in Ref. [1] motivated by the
experimental temperature dependence of �K�T�. On the
other hand, our formula (24) gives �K / �2

0. The error
bars in the experiment [1] are quite big, so deciding be-
tween the linear or quadratic dependences of �K on �0 may
require more precise measurements. The appearance of �2

0
in Eqs. (21) and (24) is quite natural, originating from the
product �x�y, which changes sign when the chirality of
the order parameter changes from px � ipy to px � ipy, as
observed experimentally [1]. This product can be also
written as the vector � ��� pointing along ẑ [14], which
is consistent with Eq. (17). It would be very interesting to
verify experimentally the ��3 frequency dependence of
the Kerr angle predicted by Eq. (24).

Experiments indicate that the superconducting gap may
have the so-called horizontal lines of nodes in Sr2RuO4

(see Ref. [11], and references therein). In this case, �0

should be considered a function of the electron momentum
pz perpendicular to the layers: �0 ! �0 cos�pzd� for trip-
let pairing [11] or �0 ! �0 sin�pzd� for singlet pairing
[10]. In both cases, averaging �2

0�pz� over pz generates an
additional factor 1=2 in Eq. (24) and no changes in
Eq. (19). Thus, although experiment [1] directly proves
the chiral character of the superconducting pairing in
Sr2RuO4, it does not discriminate between triplet pairing
and the chiral singlet pairing �px � ipy� sin�pzd� proposed
in Ref. [10].

In conclusion, we derived the Chern-Simons-like term in
the effective action of the 2D chiral px � ipy supercon-
ductor, generalizing previous results [6,14] to finite fre-

quency and temperature. The resultant dc Hall conductivity
has the half-quantum value �xy � e2=2h at T � 0 [6], but
is reduced at a finite temperature by the factor (20). We
derived Eq. (21) for the imaginary part of the optical Hall
conductivity and Eq. (24) for the polar Kerr angle, which
agrees by the order of magnitude with the recent experi-
mental measurement in Sr2RuO4 by Xia et al. [1].
Equation (24) predicts that the Kerr angle is proportional
to the square of the superconducting energy gap and is
inversely proportional to the cube of frequency, which can
be verified experimentally. The derivation may be also
relevant for the finite-temperature Chern-Simons theories
in high-energy physics (see Refs. [20,21]).
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