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Coupled-Cavity QED Using Planar Photonic Crystals
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We introduce a technique for controlling cavity QED by indirectly coupling two planar-photonic-
crystal nanocavities through an integrated waveguide. Guided by an explicit analytical expression for the
photon Green function, the resulting optical response of a single quantum dot, embedded in one of the
cavities, is shown to be profoundly influenced by the distant cavity. The regimes of cavity QED, e.g.,
vacuum Rabi splitting, are made significantly easier and richer than with one cavity alone.
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The ability to tailor the optical response of an atom or
quantum dot (QD) has been intriguing scientific research-
ers for some time. Since the early work of Purcell [1], it has
been known that the surrounding environment of an atom
in which a photon is emitted can change the spontaneous
emission rate, and thus the emission characteristics are not
solely dependent on the property of the emitter. Further
motivation has been sparked by the introduction of pho-
tonic crystals (PC’s) [2,3] since they have the means to
control the surrounding vacuum of electromagnetic modes,
and thus the Purcell effect can occur over broadband
frequencies [4]. For strong coupling of an atom to a cavity,
the enhanced emission rate associated with a single reso-
nance can result in a doublet in the frequency regime,
whose spectral width corresponds to the vacuum Rabi
splitting in the language of quantum optics. In the domain
of semiconductor optics, several recent breakthroughs have
occurred including single QD vacuum Rabi splitting [5-7],
very large Q/V ratio nanocavities [8], and the determinis-
tic coupling of QD’s to planar PC’s [9].

For applications in cavity QED, the current trend seems
to be to increase the single-cavity Q to as large a value as
possible. On the other hand, there is a rich degree of flexi-
bility that exists by combining waveguides and cavities;
e.g., quantum networks through fibers and nanodots have
been proposed using cavity-assisted Raman processes [10].
In this Letter we investigate light-matter interactions using
a single QD within a fully integrated planar PC platform
that contains two cavities and one waveguide. Importantly,
the material is extended from the usual cavity to include a
distant (no direct coupling) cavity with similar character-
istics, indirectly coupled through a waveguide. We term
this new light-matter regime: coupled-cavity QED.

The structure of interest is depicted in Fig. 1, showing a
planar PC coupled to two nanocavities. The QD is em-
bedded in cavity 1. The geometry is somewhat complicated
and little insight will be gained by running large scale
numerical calculations. Instead we motivate the fact that
the essential physics can be made clear by seeking out the
photon Green function tensor (GFT). Armed with the
analytic GFT of the entire structure, we show that under
certain conditions, arbitrarily large enhancements of the
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local photon density of states can be obtained, regardless of
the individual cavity Q. More generally, we investigate a
novel nanophotonics system that connects to both classical
and quantum electromagnetically induced transparency
(EIT)-like phenomena using single QD’s, opening up a
rich range of light-matter control as a very fundamental
level. The electric-field GFT G(r, r’) (the w dependence
we assume is implicit) describes the field response at r’ to
an oscillating dipole at r, and can be defined from Maxwell
equations. The GFT describes many fundamental photon
coupling effects, including dipole-dipole coupling [11], the
Purcell effect [4], QED near an interface [12], optical
scattering loss [13], and the full machinery of non-
Markovian quantum optics [14], and, so upon solution,
the GFT can highlight the underlying physics in an elegant
and transparent way.

We first derive the propagating electric field and the GFT
for the PC waveguide and one cavity. This solution set is
termed E,,.(r) and G,,.(r, r'), with the subscript wc refer-
ring to the waveguide and cavity under investigation. We
consider waveguide and cavity resonances that are deep
inside the PC band gap and a propagating waveguide mode
that is below the light line (lossless). The GFT is defined by
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FIG. 1. Simple schematic showing indirect coupling between
two photonic crystal cavities connected through an integrated
waveguide. Cavity 1 contains an embedded QD. The propagat-
ing Bloch mode is labeled as E;, while the cavity modes are E
and E,, that are spatially separated by L.
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expanding into all the electric-field modes G(r,r') =
> wpAapEa(r)Eg(r'), where A, is the expansion coeffi-
cients that we seek to obtain, and E , g represent the modes
of the PC system that may belong to the cavity or wave-
guide, with these modes weakly coupled to each other. We
adopt shorthand notation: E(r)— |E), &,(r)— &,
Gr,r)—G, 6(c —r)— 1, V — Ae(r), with the latter
a material permittivity change that drives a GFT solution.
With a separation of the quasitransverse and quasi-
longitudinal electromagnetic modes, the GFT G=
Sklo?/ (0} — 0P)|EIXEL| + [EEXEL]]. It proves advan-
tageous to define a new GFT, K = Y, w} /(0} — 0?) X
|E XEy|, where the modes from now on are all general-
ized transverse (|Ey) =|El)) and satisfy VX V X |[Ey) =
w? /c?&,|Ey). The full GFT then becomes G = K — 1/,
which is identical to the GFT’s discusssed by Wubs et al.
[15], within a multiple scattering formalism.

With a background permittivity &,. and a waveguide
defect perturbation V,,, the waveguide modes are normal-
ized from (E,|&,|Eg) = 8,5, and 3 (E,|3,|E,) =1,
where the total permittivity is &,, = &,. + V... The propa-
gation modes with wave vector k can be scaled as |E;) =
Ja/L,ley)e™, with L,, the length of the waveguide, a the
pitch and |e;) the periodic Bloch mode. One finds the
waveguide G,, = 3 0}/(0} — @) |EXE;| —1/8,,. Simi-
lar arguments apply for the PC nanocavity with modes nor-
malized in the usual way, and the cavity G, = w?/(w? —
w?)|E XE,| — 1/2,, where w, is the cavity resonance and
pe T V. (V. is the cavity perturbation). We exploit
the Dyson equation G = G, + GV G , and expand out the
total GFT defined earlier. Subsequently, the main task is to

8, =&

(1+K,,V,)K,V

invert a matrix M, with elements M., = (0? — @?)/ @2,
My = (0} — 0?)/w}, and My . = (E4|V |E.) = V&< =
Vke  where we have used the orthogonality relation

(E,|&|Eg) = 8, [16]. It follows that
G K i vaclEchcl + wglEchcl _ 1
& w% - w? - <EC|VCKWVC|EC> &
(1)
and similarly for the electric field: |E,.) = [E)+

GWCVC|E,{,I>, where |E,, ) is the injected field. The cavity
field (|E,)) belongs to either a localized defect mode in
cavity 1 (|E;)) or cavity 2 (|E,)). Similar expressions have
been obtained by Cowan and Young [16] and by Hughes
and Kamada [17], using a similar technique but without
any direct consideration for the longitudinal modes. The
subtle differences is that there appears w? rather than w?
before the cavity contribution and a term that will include
self-energy corrections at the cavity perturbation.

Next we add in the second cavity (cavity 2), separated by
a distance + L along the waveguide, taken to be an integer
number of unit cells along the waveguide. We consider
indirect coupling between cavities. Employmg the appro-
prlate Dyson equatlon Gwz = GO + GOVszz, and
IEk y— (1 + GW2V2)IE,(,) as the solutions prior to adding

in the first cavity (so G, = G,, is for the waveguide alone),

we obtain
G = (1 +K,,Vo)K, Vi [EXE,| + W?|E XE,]| _ i
" @t = @ = BV (1 + K V)K VI E) 8
)

and

VIEXE |V (1+K,,V))IE)+ ?|EXE, |V, |EK,> (V) + V2)|Ek,,>

|Ewcc> = (1 + KW2‘72)|EI{/1> +

where sz is obtained from Eq. (1) using parameters that
describe cavity 2 coupled to the waveguide on its own (¢ =
2). The total permittivity is now &, =&, +V, +V, +V,.
All that remains to be done is to carry out the complex
integrations (whenever G,, appears) that are aided by not-
ing that the waveguide Bloch modes and the overlap in-
tegrals varying slowly with respect to k. We also assume
mirror symmetry for the cavity mode along the propaga-
tion (x) direction. The total GFT can be written as (A}wcc =
Zaﬁf(f;’fi — 1/8,, with, for example,
w%|E1><E1|
0} — w? =il —iol$[1+ e lr(w)]

where r,(w) = iolS/[w} — ©? — io(Y + TS)] is the re-
flection coefficient of cavity 2. Since the PC cavity modes
are strongly confined, the above is the dominant contribu-
tion for spatial points near cavity 1. The cavity-to-

w}—o?—(EV,(1+K,,V)K, V| |E)) &

3)

[
waveguide coupling rate is I'C = w?L, /2v,|Vc|?,
where v, is the photon group velocity and the overlap
integral Vko¢ = <Ekw|‘7¢|Ec>- The coupling to radiation
modes above the light line is included with the bare cavity
coupling rate, I'?, which is typically much smaller that the
cavity rate.

The aforementioned self-coupling GFT [Eq. (4)], de-
scribing cavity 1, already contains some remarkable new
physics. Assuming a QD within this environment with a
dipole moment d = dii;, with fi; a unit vector in the
direction of the dipole, it is well known that the radiative
decay rate I', = Im(K,.);;2|d|?/(he,), and the resonance
shift Aw = Re(K,,..);:|d|*/(hey). Note that we use K
rather than G in the latter term to distinguish the frequency
shift to a much smaller vacuum Lamb shift, that is of no
interest here; we have also assumed weak coupling (for the
moment) to connect to these formulas. Now consider the
case of w = w; and I'j = 0, with one cavity only, so that
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we recover the familiar expression K,,. = iQ|E,XE,]|,
with O = w,/T’$. Employing a cavity field value at the
maximum field position, then K,. = iQ/[&,(ry)Vesl.
However, with two cavities as above we obtain chc =
iQ/[(g,(r)) Vo)1 — e%*«L)] so that both the decay rate
and the resonance shift can obtain substantially different
values than with 1 cavity alone. As an example, with a
phase factor 2k, L =w/2+2nm (m=0,12...),
K,.. =K,./(1 —i); if 2k,L = 7 + 2na then K,,.. =
K,./2; if 2k,L =3w/2+ 2nm, K,..=K,./(1+i);
and if 2k,L = 27 + 2n7 then IA(WCC = 00, So the second
cavity (far away from the QD) can induce large frequency
shifts, both positive and negative, reduce the local density
of states by 2, or increase it indefinitely. Let us now see if
these solutions make physical sense in terms of the re-
quired Bloch modes. For 2k, L = 7/2 + 2n and taking
L = 10aq, then k,a = /40 + n7/10; taking, e.g., n = 7,
then k, = 0.3625(277/a) which is indeed a typical low
loss propagation wave vector for planar PC waveguides.
Similarly, if 2k,L =27 + 2nm, k,a = (n+ 1)7/10,
which is again easily satisfied [n =7 gives k, =
0.4(27/a)]. We note in the latter case there is no decay,
only an infinite resonance shift. In reality of course one
must include a I'® (as we do below), but the divergent
nature and profound enhancements that we introduce
here should still be observable, especially as it is well
known that I'® << T'¢ for planar PC’s. The k,, values above
typically yield group velocities of around ¢/10 depending
very much on the design of the waveguide; importantly
these should not be too close to the very slow light regime
|

<‘x - OolEH/CC>

(near the band edge) which would result in a reduction of
the cavity quality factor and produce large (disorder-
induced) scattering losses [13,18].

We now introduce the single QD with a volume V,; and
diameter much smaller than the wavelength of light. Thus
the QD permittivity Ae® = f;|d|?/[2V 80w, — © —
il';/2)] with T'; is the nonradiative decay rate, and w,
the QD resonance frequency. In the narrow frequency
range of interest, we need only consider the fundamen-
tal 1s exciton (electron-hole pair) resonance. With the
QD at position r,, once again we exploit a Dyson equation
to obtain a renormalized QD permittivity Ae(r,) =
ﬁi|d|2/[2Vd80h(c?)d - w — lrd/z - Ed)], where Ed =
Vi (rg| Kool r)Ae®(@, — @ — iT;/2) depends on the
background medium GFT (pre-QD) that we have just
derived. Note that the main role of the depolarization,
whose value depends on the QD and background permit-
tivity [i.e., (V, + V,)/8,], is to give rise to a possible QD
resonance shift. In principle, one should then worry about
the shape and volume of the dot to make an accurate
calculation. Instead, we assume the QD resonance will be
renormalized already, so that &, contains this electrostatic
(frequency independent) contribution.

While the renormalized susceptibility is related to what
one will observe above the cavity (via vertical leakage), the
transmission of light yields a different and complimentary
experimental signature of the regime under investigation.
By injecting a forward propagating field (homogeneous
solution with k = k;,) from the bottom of the first cavity,
one obtains

iwl[1 + ry(@)][1 + ry(w)et]

Hw) = =1+ rn(w)+ -

(x— °°|Ek,1>

where X' =0%/(o, — w —iT,/2), with Q2=
w4 |d|*(r JE{XE |r;)/(2eoh). At a peak antinode position,
O? = w,|d)?/[2&ye,(r;)hV4]. In the strong coupling re-
gime, the transmitted (or reflected) spectrum from the first
cavity alone (with the QD) will contain the familiar Rabi
splitting of 2(). We remark that it is just as easy to calculate
the reflection [17], but we focus here on the transmission as
it is much easier to measure experimentally.

For calculations, we adopt the following PC and QD
parameters: w,;/(27) =230 THz, T';y =1 weV [19],
@, = w; (on resonance with cavity 1) and dipole moment
d = 30 D(~0.6e¢ nm). The cavity Q factors are Q¢ =
w,./T¢=4000 and Q° = w,/T° = 80000, that we as-
sume to be the same in both cavities (the relaxation of
this makes little qualitative difference on our findings and
conclusions). For the cavity separation we take L = 10a
and choose 3 representative values of 2k,L, namely,
7/2 + 141, 7 + 14, and 27 + 1447, In Fig. 2 we present
several example calculations of the PC-influenced permit-
tivity and the light transmission. In (a) we consider 1 cavity
only, yielding marginal splitting of the permittivity but a

= 0? —iolV = iwl{[1 + ry(w)e*l] — w3

(&)

{
clear splitting of the transmitted field. Such an effect has
recently been termed dipole-induced transparency [20],
and interestingly can occur even when the QD is not in
the strong coupling regime (cf. the thick solid curve); it
should be noted that such effects were first anticipated in a
reflection geometry [17]. In (b) the situation is drastically
different, with substantial enhancements and reshaping of
the QD resonance due to the external second cavity. In
particular, with changing phases, one goes from a large
asymmetric permittivity (note that these peaks are reversed
with 2k, L = 37/2 + 14), to a single peak only but
enhanced (c), through to a pronounced splitting with a
significantly enhanced Rabi splitting (d). In this latter
regime, there are now two spectral positions that exhibit
EIT-like phenomena. It is important to stress the difference
between classical EIT, single QD-cavity EIT, and the
coupled-cavity EIT. The former can never connect to any-
thing quantum and is limited by the finite broadening of the
bare cavity; the second depends on the QD broadening as
well as the properties of the bare cavity; however, the latter
is a mixed case, but one in which the local photon density
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FIG. 2. (a) Absolute value of the quantum dot (QD) permit-
tivity (Ae€) and light transmission (7 = |¢|?) with one cavity
only; the QD is resonant with the cavity mode. The thin solid and
chain curves display the transmission without and with a QD,
respectively, while the thick solid curve shows the permittivity.
(b)—(d) As in (a) but with a spatially separated cavity with
various phase separation parameters (see text): 2k,L = 7/2 +
14, 2k, L = 7 + 14, and 2k, L = 27 + 14, respectively.

of states can be made arbitrarily large and in which fre-
quency shifts can be introduced into the one photon emit-
ter; with different cavity frequencies, several peaks can
also be obtained.

Finally in Fig. 3 we study the effect of detuning between
the two cavities (w; # ;). The first panel (a) displays the
nominal case as a reference [identical to Fig. 2(d) with no
detuning], while (b)—(d) show similar calculations but with
w, — w; = 0.05, 0.1, and 0.15 meV, respectively. Note
that we have reduced (rescaled) the permittivity by a factor
of 3 here in comparison to the previous figure to accom-
modate the massive increases that occur due to detuning. A
large resonant enhancement occurs as one of the Rabi
sidebands overlaps with the second cavity’s resonance
(near 0.1 meV) resulting in an order-of-magnitude en-
hancement of the QD permittivity over 1 cavity alone. In
addition, there are substantial frequency shifts of the QD
resonance of the order 0.04 meV [see (c) and (d)], yielding
Fano line shapes due to coupling between a narrow reso-
nance and a continuumlike system.

In summary, a coupled-cavity QED regime for modify-
ing and manipulating the regimes of cavity QED and nano-
scale light-matter interactions using a single QD within a
planar PC nanocavity has been proposed. By obtaining the
analytic GFT of the complex surrounding environment, we
have demonstrated the profound effect that an integrated
waveguide and an external cavity can have on the trans-
mission of light as well as on the renormalized suscepti-
bility of a single-cavity embedded QD. Besides enhancing
the regimes of the usual cavity QED, more generally with
the ability to add in more than 1 QD (enabling intercavity

0.5-0.5 0 0.5
Aw (meV)

FIG. 3. (a) Asin Fig. 2(d) with two spatially separated cavities,
but the permittivity has been rescaled down by a factor of 3 (see
text). (b)—(d) As in (a) but with a detuning w, — w; of 0.05, 0.1,
and 0.1 meV, respectively.

QD coupling or intracavity QD coupling [21]) this scheme
opens up a possible way to entangle photons and excitons
over macroscopic distances.
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