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We study the angular correlation function of speckle patterns that result from multiple scattering of
photons by cold atomic clouds. We show that this correlation function becomes larger than the value given
by Rayleigh law for classical scatterers. These large intensity fluctuations constitute a new mesoscopic
effect specific to atom-photon interactions, that could not be observed in other systems such as weakly
disordered metals. We provide a complete description of this behavior and expressions that allow for a
quantitative comparison with experiments.
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A wave propagating in a random medium undergoes
multiple scattering and the intensity pattern resulting
from interferences of the scattered waves with each other
is known as a speckle pattern. The angular and time
dependent properties of these patterns have been exten-
sively studied [1–3]. They exhibit coherent mesoscopic
effects and provide a sensitive probe to scattering proper-
ties of diffusive media. Quasiresonant elastic scattering of
photons by cold atomic gases represents in this context an
important issue, since it provides a new tool to study
properties of cold atomic gases such as atomic dynamics.
Photon propagation in atomic gases differs from the case of
electrons in disordered metals [4] or of electromagnetic
waves in suspensions of classical scatterers, due to the
existence of atomic internal degrees of freedom coupled
to the photon polarization. Some effects of a Zeeman
degeneracy on the coherent backscattering [2,5] have
been recently investigated in the weak scattering limit [6]
in terms of phase coherence times [7].

The purpose of this Letter is to study the static angular
correlation function of photons performing coherent mul-
tiple scattering in a cold atomic gas. The photon intensity
correlation function between angular scattering channels is
defined using the transmission coefficient Tab by

 Caba0b0 �
�Tab�Ta0b0

TabTa0b0
: (1)

Here, the overbar denotes a configuration average over
both the position of atoms and their internal degrees of
freedom (see below) and �Tab � Tab � Tab. For classical
scatterers, intensity fluctuations obey the Rayleigh law
Cabab � 1. In the presence of a Zeeman degeneracy, an-
gular correlations of speckle patterns and intensity fluctua-
tions become larger than 1. This is a new and genuine
mesoscopic effect specific to multiple scattering of photons
by atoms.

Atoms are modeled as degenerate two-level systems
denoted by jjgmgi for the ground state and jjemei for the
excited state, where j is the total angular momentum andm

is its projection on a quantization axis. The levels are
degenerate with jmgj � jg and jmej � je.

We refer to the following possible experimental setup
(Fig. 1). A light pulse is incident along a direction ŝa onto a
dense enough atomic gas confined in a slab geometry. This
pulse is detected along a direction ŝb after being multiply
scattered (ab channel). A time � later, a second pulse that
corresponds to the a0b0 channel, is detected. We assume
that the time � is short enough so that the atoms stay at rest
between the two pulses. The same measurement is repeated
after a time T � �, during which the scatterers move. The
averaging over spatial disorder results from this motion.
This is a Young-like experiment. Thus, although a pulse
contains many photons, the transmitted intensity Tab is
proportional to the probability of one ‘‘representative’’
photon incoming along ŝa, to emerge along ŝb.

The average transmission coefficient Tab is obtained by
summing all the possible scattering amplitudes, AfR;mgn ,
corresponding to a given configuration fR;mg. Here fRg
accounts for the spatial positions of all scatterers, and fmg
is a notation for their internal Zeeman states both before
and after scattering. The index n denotes one possible
multiple scattering path. Squaring the sum of amplitudes
we have [8]
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FIG. 1. Photons in each pair of pulses are scattered by atoms at
identical positions ri but with distinct and uncorrelated quantum
numbers (mi, mf) and (m0i, m

0
f). After a time T � �, a new

measurement is performed after the atoms moved to new posi-
tions r0i.
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 T ab � j
X
n

AfR;mgn j2 �
X
nn0
AfR;mgn AfR;mg�n0 (2)

where the overbar denotes a configuration average, over
both fRg and fmg. When averaging over fRg, all cross terms
n � n0 vanish because of large fluctuating phase shifts, so

that Tab �
P
n jA

fmg
n j2 . This expression, known as the in-

tensity diffuson, is the leading approximation in the weak
disorder limit k0l� 1, where k0 and l are, respectively, the
wave number and the elastic mean free path of photons.
The (ab) pulse contains many photons, and each of them
may change the internal state of atoms. Therefore, if fmg
(respectively fm0g) is the atomic internal configuration seen
by a representative photon of the (ab) [respectively (a0b0)]
pulse, then we can assume that there is no correlation
between fmg and fm0g.

Similarly to the average intensity (2), the correlation of
the transmission coefficient is

 TabTa0b0 � TfR;mgab TfR;m
0g

a0b0 �
X
ijkl

AfR;mgi AfR;mg�j AfR;m
0g

k AfR;m
0g�

l

(3)

since, as before, the averaging over fRg leaves only pairs of
amplitudes having exactly opposite phase shifts. To lead-
ing order in the weak disorder limit, the only nonvanishing
contributions involve two diffusons, i.e., two possible pair-
ings of amplitudes, either i � j, k � l, which gives
Tab �Ta0b0 , or i � l, j � k so that

 �Tab�Ta0b0 �
X
ij

Afmgi Afm
0g�

i Afm
0g

j Afmg�j : (4)

The correlation function thus appears as products of two
amplitudes, that correspond to different internal configu-
rations fmg and fm0g, but to the same scattering path i (or j).
Most of multiple scattering paths i and j do not share
common scatterers so that we can average Afmgi Afm

0g�
i and

Afm
0g

j Afmg�j separately, since these averages are taken upon
different atoms, and finally,

 �Tab�Ta0b0 �
��������
X
i

Afmgi Afm
0g�

i

��������
2

(5)

In the theory of multiple scattering it is helpful to use a
continuous description [2]. In this framework, one defines
two diffuson functions D�i;c� by [8]

 T ab �
Z
drdr0D�i��r; r0� (6)

and

 �Tab�Ta0b0 �
��������
Z
drdr0eik0	�ŝa:r��ŝb:r0
D�c��r; r0�

��������
2

(7)

where �ŝa;b � ŝa;b � ŝa0;b0 . The intensity diffuson

D�i��r; r0� is the sum of the terms jAfmgn �r; r0�j2 between

end points r and r0. On the other hand, the correlation

diffuson D�c��r; r0� is the sum of the terms Afmgi Afm
0g�

i , i.e.,
that involve uncorrelated configurations fmg and fm0g.

The two functions D�i;c� are obtained from the iteration
of a proper elementary vertex V �i;c�, that describes the
microscopic details of the scattering process. The iteration
of the elementary vertex is written symbolically [either for
D�i;c�, V �i;c� we shall denote by D, V ] as

 D � V �VWV � � � � � V �DWV : (8)

The term V accounts for a single scattering and DWV
represents its iteration. The quantity W describes the
propagation of the photon intensity between successive
scattering events and it will be described later on.

The elementary vertex is obtained by the pairing of two
scattering amplitudes of a photon by an atom. It is given by
[9]

 V �
4�=l

2jg � 1

X
mi

hjgm2jV�"̂1; "̂2�jjgm1i


 hjgm4jV�"̂3; "̂4�jjgm3i
�; (9)

where the operator V�"̂0; "̂� �
P
me
"̂0� � djjemei


hjemejd � "̂ results from the dipolar interaction energy
�d �E between atoms and photons, d being the atomic
dipole operator and E the electric field operator. In the case
of V �c�, each one of the two coupled scattering amplitudes
in (9) might belong to a distinct atomic configuration,
meaning that we must consider two distinct couples of
initial (jjgm1i, jjgm3i) and final (jjgm2i, jjgm4i) atomic
states, as well as two initial ("̂1, "̂3) and final ("̂2, "̂4)
photon polarization states. The summations over the quan-
tum numbers mi result from averaging over initial atomic
states and from nondetected final states. Thus V �c� corre-
sponds to the most general case regarding the mi quantum
numbers. In contrast, V �i� corresponds to the differential
scattering cross section, for which we set m1 � m3, m2 �
m4, "̂1 � "̂3, and "̂2 � "̂4 in (9). This is because the
intensity diffuson is built out of two coupled amplitudes
that must belong to the same scattering process. This
distinction between V �i� and V �c�, and therefore between
D�i� and D�c�, occurs only for jg > 0 and it is at the basis
of the new results we obtain here for mesoscopic speckle
correlations.

The iteration (8) is implemented using the decomposi-
tion of the various terms into standard basis components,
thus leading to the definition of rank four tensors such as

 V �
X
����

�"̂1����"̂2�
�
��"̂3�

�
���"̂4��V ��;��: (10)

Likewise, the iteration Eq. (8) for the diffusons acquires a
tensorial structure, which reads
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 D ��;�� � V ��;�� �W
X
��	


D��;��b��;	
V 	
;��:

(11)

Here W � Wb, the functionW describes the scalar part of
the photon intensity propagator and b, defined by

 b��;�� � h	��� � ��1��ŝ�ŝ��
	��� � ��1��ŝ��ŝ�
i;

(12)

accounts for the polarization dependent part. This ex-
pression follows at once by noticing that after being scat-
tered by an atom, the two outgoing amplitudes propagate
with a wave vector ŝ � k=k0, random in direction but
identical for both, and with two different polarization
components. Since ŝ is random, the intensity propagation
is averaged h. . .i over photon wave vectors direction. The
term ��� � ��1��ŝ�ŝ�� expresses transversality.

To proceed further, we use the Wigner-Eckart theorem
to rewrite the tensor V ��;�� in terms of a summation of
product of 3j symbols,

 V ��;�� � 3�2je � 1�ajgje
X

mimem
0
e

je 1 jg
�me � m1

� �



je 1 jg
�me � m2

� �
je 1 jg
�m0e � m4

� �



je 1 jg
�m0e � m3

� �
; (13)

where ajgje � �2je � 1�=3�2jg � 1�. The two tensors
b��;�� and V ��;�� can be written in the form of a 9
 9
matrix. According to the spectral decomposition theorem,
they can be decomposed using an orthonormal set of
(generally) nine projectors T�K� [10]. Looking at (11), we
wish to find the spectral decomposition of D using the
spectral decomposition of V and bV . The problem is that
they do not share the same projectors set in their spectral
decomposition. We are thus led to define a new tensorU by
D � UV . It obeys the iteration equation U �
1�WUVb and it involves only the spectral decomposi-
tion of V �i;c�b �

P8
K�0 u

�i;c�
K T�K�. This leads immediately

to

 D �i;c�
��;�� �

X
K

U�i;c�K �V
�i;c�
K ���;�� (14)

with V �i;c�
K � T�K�V �i;c� and

 U�i;c�K �
4�=l

1�W�q�u�i;c�K

’
8�c

3l2
ajgje

1=u�i;c�K
1
��i;c�K

�Dq2
; (15)

where q (with q � jqj) is the Fourier variable of the
difference R � r0 � r between the two end points of a
multiple scattering sequence. The right-hand side in (15) is
obtained by using the diffusion approximation (i.e., ql�
1), so that W�q� ’ 3

2ajgje
�1� q2l2=3�, where D � cl=3 is

the photon diffusion coefficient [2] and c the speed of light.

We identify the set of characteristic times

 ��i;c�K �
l
c

� �
u�i;c�K

2
3ajgje � u

�i;c�
K

: (16)

For V �i� [m1 � m3,m2 � m4 in (13)], it is straightforward
to check that �V �i�b���;�� admits a spectral decomposi-
tion over 3 projectors T�K� only [2,6]. In contrast, for V �c�

there are no constraint on the mi quantum numbers, so
that the total angular momentum needs not to be con-
served, and the corresponding spectral decomposition in-
volves usually more than 3 projectors T�K�. For a non-
degenerate ground state level (jg � 0), angular momentum
is automatically conserved and the two vertices become
identical, V �c� �V �i�.

The poles that occur in (15) correspond to diffusive
modes of lifetime ��i;c�K . This shows up when rewriting
(14), with the help of (10), in real space

 D �i;c��r; r0� �
X
K

Y�i;c�K

u�i;c�K

Z 1
0
dtD�r; r0; t�e�t=�

�i;c�
K ; (17)

where

 Y�c�K �
X
����

�"̂a����"̂b�
�
��"̂a0 �

�
���"̂b0 ���V

�c�
K ���;�� (18)

and a corresponding expression for Y�i�K obtained by setting
a0 � a, b0 � b and V �i� in the previous relation. The scalar
diffuson propagator D�r; r0; t� obeys a diffusion equation
whose solution for a slab of width L is well known [2,10]
and leads for (6) and (7) to

 T ab �
X2

K�0

Y�i�K
u�i�K

D�Q�i�K �0�� (19)

and

 �Tab�Ta0b0 � ��ŝa;�ŝb

�X8

K�0

Y�c�K
u�c�K

D�Q�c�K �qp��
�

2
: (20)

We have defined the quantities qp � k0�ŝa, Q�i;c�K �x� ����������������������������������
x2 � �1=D��i;c�K �

q
, and D�x� � sinh2�xl�=	xl sinh�xL�
.

We now analyze expressions (19) and (20), which
constitute the main results of this Letter. First, consider
the modes of the average intensity D�i�. It is easy to
check that ��i�0 is infinite as a result of the Ward identity
u�i�0 �

2
3ajgje [see (16)]. The corresponding Goldstone

mode U�i�0 / 1=Dq2 expresses energy conservation and
long-range propagation of the average intensity. The two
other modes U�i�K are exponentially damped with the times
��i�K [see (17)]. This expresses photon depolarization in
multiple scattering [2,6,7,11].

The spectral decomposition of D�c� gives rise to nine
modes and their corresponding times ��c�K . Such times are
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well known to occur in quantum mesoscopic physics, e.g.,
in conductance fluctuations of disordered metals in the
presence of magnetic impurities [2,12]. The times ��c�K
describe how underlying interferences between multiply
scattered waves (electrons in metals, photons in the present
case) are washed out in the presence of other degrees of
freedom. The surprising and new feature of the atom-
photon scattering is the occurrence of a mode (K � 0)
with a negative ��c�0 . According to (17), this corresponds
to an amplified mode that enhances the angular correlation
function. This amplified mode is present for a degenerate
atomic transition (jg; je > 0) and vanishes otherwise. Its
origin can be traced out from the vertex (9) which can be
written as a sum of an incoherent contribution (i.e., a sum
of probabilities) present both in V �i� and V �c�, and a
coherent contribution (i.e., a sum of products of quantum
amplitudes associated to different Zeeman states). The
coherent contribution enhances V �c� with respect to V �i�

and its iteration gives rise to the amplified mode charac-
terized by ��c�0 . Expressions (19) and (20) lead to an ex-
pression of Caba0b0 plotted in Fig. 2. This expression allows
us to recover the limiting case of a scalar classical wave [1]
corresponding to Y�c� � Y�i� � 1 and to a single mode with
infinite ��i;c�0 . It also provides a simple expression for
angular speckle correlations of classical Rayleigh scatter-
ing of a polarized wave [10,13]. For atomic transitions
between degenerate levels,Caba0b0 exhibits a steep decrease
and large intensity fluctuations (see Fig. 2) as compared to
the case of nondegenerate atomic levels. Intensity fluctua-
tions measured by Cabab become larger than 1, unlike
Rayleigh law, Cabab � 1, well obeyed by classical scatter-
ers. Large intensity fluctuations result from the amplified
mode ��c�0 which leads to a divergence of the integral in
(17). This divergence is cutoff by other dephasing mecha-
nisms, such as Doppler shift, inelastic scattering or finite

size of the atomic trap. Denoting by � this upper cutoff,
and assuming that the dominant contributions to Tab and to
�T2

ab are given, respectively, by the Goldstone and the
amplified modes, we deduce from (17) that

 Cabab �
�T 2

ab

T 2
ab

’ A�4

�
eX�D=L2

� 1

X

�
2
; (21)

where X � �L=L�c�0 �
2 � �2 involves the diffusion length

L�c�0 �
��������������
Dj��c�0 j

q
and A is a constant equal to one for a

nondegenerate ground state. This approximate expression
reproduces the main features ofCabab plotted in the inset of
Fig. 2, namely, that it can be larger than the Rayleigh term
and that it is peaked at a value of L that depends on the
cutoff �. When L�c�0 and � are infinite, Cabab becomes
independent of L and is given by the Rayleigh law.
Relative fluctuations as given by (21) thus provide a direct
probe of dephasing mechanisms in cold atomic gases.
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FIG. 2. Angular correlation function Caba0b0 plotted as a func-
tion of q � k0�ŝa for an atomic transition between nondegen-
erate (jg � 0, je � 1, dashed line) and degenerate energy levels
(jg � 1, je � 2, solid line). The nondegenerate case describes
the classical Rayleigh scattering of a polarized wave. These
curves correspond to L � 7l. The inset gives the dependence
of intensity fluctuations Cabab upon the width L (the dashed line
is the Rayleigh law).
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