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We report on the first genuinely three-body �KNN � ��N coupled-channel Faddeev calculation in
search for quasibound states in the K�pp system. The main absorptivity in the K�p subsystem is
accounted for by fitting to K�p data near threshold. Our calculation yields one such quasibound state,
with I � 1=2, J� � 0�, bound in the range B� 55–70 MeV, with a width of �� 90–110 MeV. These
results differ substantially from previous estimates, and are at odds with the K�pp! �p signal observed
by the FINUDA collaboration.
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The issue of �K nuclear quasibound states has attracted
considerable interest recently, motivated by earlier sugges-
tions for (anti)kaon condensation in dense matter [1] and
by extrapolations of K� optical potentials fitted to K�

atom data [2,3]. These K� atom studies suggested �K
nuclear potential depths about 150–200 MeV at nuclear-
matter density �0 � 0:16 fm�3, although potentials eval-
uated by fitting to K�p low-energy data give substantially
lower values, about 100 MeV [4] or even as low as 50 MeV
[5] depending on how the �KN in-medium t matrix is
constructed. It was pointed out that �K nuclear states, if
bound by over 100 MeV where the �KN ! �� main
strong-decay channel is closed, might become sufficiently
narrow to be observed [6–8]. Yamazaki and Akaishi [9], in
particular, discussed few-body �K nuclear configurations in
which the strongly attractive I � 0 �KN interaction is
maximized. It is the I � 0 coupled-channel s-wave inter-
action that generates a resonance in the �� coupled chan-
nel about 27 MeV below the K�p threshold, the
quasibound ��1405� [10]. The lightest �K nuclear configu-
ration maximizing the I � 0 �KN interaction is the I � 1=2
�K�NN�I�1 state with S � L � 0 and J� � 0� [11]. The

significance of identifying this potentially low-lying quasi-
bound state in the K�ppmass spectrum of suitably chosen
production reactions has been recently emphasized [12].
However, because the coupling of the two-body K�p
channel to the absorptive �Y channels was substituted by
an energy-independent complex �KN potential, the results
for binding energy and width of the K�pp system [9]
provide at best only a rough estimate. Recently, the
FINUDA collaboration at DA�NE, Frascati, presented
evidence in K� stopped reactions on several nuclear tar-
gets for the process K�pp! �p, interpreting the ob-
served signal as due to a K�pp deeply bound state [13].
However, this interpretation has been challenged in
Refs. [3,14]. Given this unsettled experimental search for
a quasibound K�pp state, precise three-body calculations
for the K�pp system appear well motivated at present.

In this Letter we report on the first �KNN � ��N
coupled-channel Faddeev calculation which is genuinely

three-body calculation, searching for quasibound states
that are experimentally accessible through a K�pp final
state. Coupled-channel three-body Faddeev calculations
were reported for K�d, with an emphasis on other entities
than on quasibound states [15]. We note that the K�d
system is not as favorable as the K�pp system for strong
binding, since the relative weight of the I � 0 �KN inter-
action with respect to the weakly attractive I � 1 �KN
interaction is 1:3 for K�d and 3:1 for �K�pp�I�1=2. By
doing coupled-channel calculations, with two-body input
fitted to available low-energy data, we wish to determine
the scale of binding energy and width expected for few-
body �K nuclear systems.

In the present work we solve nonrelativistic three-body
Faddeev equations in momentum space, using the Alt-
Grassberger-Sandhas (AGS) form [16]. The AGS equa-
tions for three particles are

 U11 � T2G0U21 � T3G0U31;

U21 � G�1
0 � T1G0U11 � T3G0U31;

U31 � G�1
0 � T1G0U11 � T2G0U21;

(1)

where G0 is the free three-body Green’s function and Ti,
i � 1, 2, 3 are two-body T matrices in the three-body space
for the pair excluding particle i. These equations define
three unknown transition operators Uij describing the elas-
tic and rearrangement processes:

 U11: 1� �23� ! 1� �23�;

U21: 1� �23� ! 2� �31�;

U31: 1� �23� ! 3� �12�;

(2)

with Faddeev indices i, j � 1, 2, 3 denoting simulta-
neously a given particle and its complementary interacting
pair. Since the �KN two-body subsystem is strongly coupled
to other channels, particularly via the ��1405� resonance
to the I � 0 �� channel, it is necessary to extend the AGS
formalism in order to include these channels explicitly.
Thus, all operators entering the AGS equations become
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3� 3 matrices: G0 ! G��
0 � ���G�

0 which is diagonal in
the channel space, and Ti ! T��i where �, � are channel
indices as follows:

 T1 �
TNN1 0 0

0 T�N
1 0

0 0 T�N
1

0
B@

1
CA;

T2 �
TKK2 0 TK�2

0 T�N2 0
T�K2 0 T��2

0
B@

1
CA;

T3 �
TKK3 TK�3 0
T�K3 T��3 0

0 0 T�N3

0
B@

1
CA:

(3)

We assign particle labels (1, 2, 3) to ( �K,N,N) in channel 1,
to (�, �, N) in channel 2 and to (�, N, �) in channel 3.
Here TNN , T�N , and T�N are one-channel T matrices,
whereas TKK, T��, T�K, and TK� are the elements of the
two-channel TKN��� matrix, accounting for �KN ! �KN
and ��! �� elastic processes, and for �KN ! �� and
��! �KN inelastic transitions, respectively. We neglect
the I � 1 inelastic transition �KN ! �� since experimen-
tally it is outweighed by the �KN ! �� transition, and also
since the I � 1 �KN configuration plays a minor role in the
structure of the I � 1=2 K�pp system under discussion.
Upon this extension into channel space, the unknown
operators U assume the most general matrix form: Uij !

U��
ij . Substituting these new 3� 3 operators into the AGS

system of equations we obtain the system to be solved.
Assuming charge independence, three-body quasibound

states are labeled by isospin. The isospin basis is used
throughout our calculation within a coupling scheme that
ensures that we are searching for an I � 1=2 quasibound
state. Assuming pairwise s-wave meson-baryon interac-
tions, as appropriate to the �KN � �� system near the
�KNN threshold, and s-wave baryon-baryon interactions

limited to the 1S0 configuration as appropriate to pp, the
total spin and total orbital angular momentum of the three-
body system are S � L � 0. Tensor forces are not opera-
tive for this situation, which also reinforces the neglect of
coupling to ��N since the strong �N ! �N transition is
dominated by the tensor force in the 3S1 YN configuration.
Hence, the �KNN � ��N system explored in this Faddeev
calculation has quantum numbers I � 1=2, L � 0, S � 0,
J� � 0�.

In order to reduce the dimension of the integral equa-
tions, a separable approximation for the two-body T ma-
trices is used:

 T��i;Ii � jg
�
i;Ii
i���i;Ii hg

�
i;Ii
j; (4)

where Ii is the conserved isospin of the interacting pair.
[for � � � our generalized T matrices coincide with the
usual ones.] For separable two-body T matrices, the AGS
equations may be rewritten using a new kernel and un-
known functions

 Z��ij;IiIj � ���hg
�
i;Ii
jG�

0 jg
�
j;Ij
i; (5)

 X��ij;IiIj � hg
�
i;Ii
jG�

0U
��
ij;IiIj

G�
0 jg

�
j;Ij
i; (6)

respectively. The calculation of the kernels Z involves
transformation from one set of Jacobi coordinates to an-
other one and isospin recoupling as well. The position of
the three-body pole was searched as a zero of the determi-
nant of the kernel of the system of integral equations on the
corresponding unphysical sheet. More details on the ex-
tended AGS equations and the numerical procedure are
relegated to an expanded version of this Letter. Here it
suffices to mention that by assuming charge independence,
s-wave pairwise interactions, and antisymmetrizing over
the two nucleons, we end up in a system of nine coupled
integral equations. This is the minimal dimensionality of
any Faddeev calculation in the I � 1=2 J� � 0� sector
which attempts to account explicitly for the strong absorp-
tivity of the �KN interactions near threshold. Within this
scheme, the interaction of the relatively energetic pion with
the slow baryons was neglected, partly because its p-wave
nature would require an extension of the present s-wave
calculation.

The input separable potentials for the T matrices (4) are
given in momentum space by

 V��I �k�; k
0
�� � ���I g�I �k��g

�
I �k

0
��; (7)

where k�, k0� are two-particle relative momenta in the two-

body respective channels, and ���I are strength-parameter
constants. For the � � � � �NN�I�1 channel, we have
used a separable approximation of the Paris potential
[17], corresponding to the one-rank potential (7) with
�NNI � �1 and a form factor:

 gNNI�1�k� �
1

2
����
�
p

X6

i�1

cNNi;I�1

k2 � ��NNi;I�1�
2 : (8)

The constants cNNi;I�1 and �NNi;I�1 are listed in Ref. [17].
For the S � �1 interactions, the form factors g�I �k�� in

Eq. (7) were parameterized by a Yamaguchi form

 g�I �k�� �
1

�k��
2 � ���I �

2 : (9)

For the I � 3=2 �N interaction we made two different
choices of ��N

I�3=2 and ��N
I�3=2. The first choice, labeled

(i) below, reproduces the scattering length aI�3=2 �

3:8 fm and effective range rI�3=2 � 4:0 fm of the
Nijmegen Model F [18]. The second choice, labeled
(ii) below, reproduces the most recent Nijmegen YN phase
shifts [19] using a scattering length aI�3=2 � 4:15 fm and
effective range rI�3=2 � 2:4 fm. For the I � 1=2 �N in-
teraction we reproduced the value quoted by Dalitz [20] for
the scattering length aI�1=2 � �0:5 fm.

For the I � 0, 1 �KN � �� coupled-channel potentials,
the parameters ���I�0;1 and ��I�0;1 in Eqs. (7) and (9) were

PRL 98, 082301 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007

082301-2



fitted to reproduce (i) E��1405� � 1406:5� i25 MeV [10],
the position and width of ��1405� which is assumed to
be a quasibound state in the �KN channel and a resonance in
the �� channel, (ii) the branching ratio at rest [21]
� � ��K�p ! �����=��K�p ! ����� � 2:36, and
(iii) the K�p scattering length aK�p for which we used
as a guideline the KEK measured value [22]:

 aK�p���0:78	0:15	0:03�� i�0:49	0:25	0:12� fm:

(10)

In order to check the sensitivity of our results to this input,
within the quoted errors, we fitted three different values of
aK�p using a range parameter � � 3:5 fm�1. All three sets
of our �KN � �� parameters, which also reproduce the
energy and width of ��1405� and the branching-ratio �,
yield low-energy K�p! K�p and K�p! ����

cross sections which are in a good agreement with experi-
mental data, as shown in Figs. 1 and 2. We note that the
data points in these figures are precisely those compiled
and cited in Ref. [23]. The strength parameters ���I�0;1 for
the �KN � �� coupled-channel separable potentials fitted
to aK�p � ��0:70� i0:60� fm are given for illustration in
Table I.

In a test calculation we first switched off the coupling of
the �KNN channels to the ��N channels. This reduces the
number of coupled integral equations from nine to three
within the three-body �KNN space. We assumed the
��1405� to be a genuine bound state of the � �KN�I�0

subsystem, reproducing the real part of the K�p scattering
length of Eq. (10). We found a zero-width bound state at
energy E �KNN � �43:7 MeV below the �KNN threshold.
This binding energy is considerably larger than the value
E �KNN 
 �10 MeV estimated by Nogami [11]. We then
performed full �KNN � ��N three-body calculations for
the three sets of �KN � �� parameters and for the two sets
(i) and (ii) of ��N�I�3=2 parameters described above. The

sensitivity of the results to the �N interaction was also
studied by setting T�N � 0 for both I � 1=2 and I � 3=2.
The calculated binding energies (B � �EB) and widths
(�) are presented in Table II where the energies are given
with respect to the K�pp threshold. It is seen that the �N
interaction, dominantly in the I � 3=2 channel, adds only
about 3 MeV to the binding energy (less than 6%) affecting
the width by up to 2 MeV (less than 2%). This is negligible
on the scale of binding energies and widths displayed in the
table and is consistent with the negligible effect (less than
2%) that the YN and�N final-state interactions were found
to have in the latest K�d Faddeev calculation of Ref. [15].
In contrast, the calculated binding energies and widths
show sensitivity to the fitted �KN � �� coupled-channel
two-body interactions, giving rise in our calculations to up
to about 25% variation in B and up to about 15% variation
in �. It is worth noting that B increases with Im aK�p,
whereas � is correlated more with Re aK�p; this feature
is typical to strong-absorption phenomena where the width
gets saturated beyond a critical value of absorptivity [24].
We have also studied the dependence of the calculated
binding energy and width on the range parameter � within
acceptable fits, keeping aK�p constant, say aK�p �
��0:78� i0:49� fm. The binding energy changes very
little, by about 3 MeV, whereas the width changes appreci-
ably, decreasing from 115 MeV for � � 3 fm�1 to
89 MeV for � � 4 fm�1.

 

FIG. 1. Calculated K�p! K�p cross sections, for three dif-
ferent sets of �KN � �� parameters, in comparison with the
measured cross sections (see text).

 

FIG. 2. Calculated K�p! ���� cross sections, for three
different sets of �KN � �� parameters, in comparison with the
measured cross sections (see text).

TABLE I. Strength parameters ���I�0;1 (in units fm�2) for the
�KN � �� potentials (7) with range parameter � � 3:5 fm�1,

corresponding to aK�p � ��0:70� i0:60� fm.

�
�KN; �KN
I�0 �

�KN;��
I�0 ���;��

I�0 �
�KN; �KN
I�1 �

�KN;��
I�1 ���;��

I�1

�1:370 1.414 �0:176 0.007 1.734 �0:340

PRL 98, 082301 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007

082301-3



Our calculations confirm the existence of an I � 1=2,
J� � 0� three-body quasibound state, with appreciable
width, in the �K�NN�I�1 channel. The width of this quasi-
bound state is a measure of its coupling to the ��N
channels where it shows up as a broad resonance. The
coupling to the ��N channels, in addition to providing a
width which renders the �K�NN�I�1 bound state into a
quasibound state, also provides substantial extra attraction
through which the binding energy is increased from
44 MeV to the range of values shown in the table. The
acceptable parameter sets considered in our calculations
yield binding in the range B� 55–70 MeV, with a width
of �� 90–110 MeV. Although the binding energy calcu-
lated here is similar to that estimated by Yamazaki and
Akaishi [9] forK�pp, our calculated width is considerably
larger than their estimate � � 61 MeV and is also larger
than the width � 
 67 MeV of the K�pp! �p signal in
the FINUDA experiment [13]. Our range of calculated
binding energies is considerably lower than B 

115 MeV attributed by the FINUDA collaboration to a
K�pp bound state. Possible extensions of the present
coupled-channel Faddeev calculation should include the
I � 1 �� channel, enlarge the model space to include
p-wave two-body interactions and introduce relativistic
kinematics. Relying on the experience of coupled-channel
Faddeev calculations of the K�d system [15], none of
these extensions is expected to change qualitatively our
results and conclusions.

In conclusion, we performed the first coupled-channel
three-body Faddeev calculation for the I � 1=2 �K�NN�I�1

system in search of a quasibound state. This state can be
reached in production reactions aiming at a final K�pp
system. It is primarily the large width, here calculated for a
�K nuclear state above the �� two-body threshold, that

poses a major obstacle to observing and identifying �K
nuclear quasibound states. Yet, even for deeper states
below the �� threshold, in heavier nuclei, a residual width
of order 50 MeV is expected to persist due to �KNN ! YN
absorption [3].
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