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Confinement in non-Abelian gauge theories is commonly ascribed to percolation of magnetic mono-
poles, or strings in the vacuum. At the deconfinement phase transition the condensed magnetic degrees of
freedom are released into gluon plasma as thermal magnetic monopoles. We point out that within the
percolation picture, lattice simulations can be used to estimate the monopole content of the gluon plasma.
We show that right above the critical temperature the monopole density remains a constant function of
temperature, as in a liquid, and then grows, as in a gas.
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It is well known that the properties of the Yang-Mills
plasma turned out to be unexpected. In very brief, the
plasma is similar rather to an ideal liquid than to a gluon
gas interacting perturbatively [1]. Amusingly enough,
many features of the plasma find their theoretical explana-
tion in terms of a dual, or string formulation of Yang-Mills
theories [2], which have been derived only in the limit of
infinite number of colors and supersymmetry.

It is a challenge to uncover the dynamical picture behind
the observations on plasma. In particular, the equation of
state has been studied in detail through lattice simulations
both in the cases of SU�2� and SU�3� gauge theories [3]. It
turns out that global characteristics of plasma are not in
contradiction either with perturbation theory or with the
string picture, or with quasiparticle models [4], and do not
provide much insight into the plasma dynamics.

Infrared-sensitive variables could be more helpful to
identify specific degrees of freedom of the plasma. An
example of such a variable is the viscosity which turns
out to be very low [5]. Other examples are the string
tensions � and ~� of the spatial Wilson and ’t Hooft loops,

 hWspatiali � exp���A�; hHspatiali � exp�� ~�A�; (1)

respectively. Here A is the area of a minimal surface
spanned on the corresponding contour.

Thus, we come to consider light degrees of freedom of
the plasma. On the theoretical side, our guiding observa-
tion is that degrees of freedom condensed at T � 0 form a
light component of the thermal plasma at T > Tc. Since the
confinement of color in non-Abelian theories is due to
magnetic degrees of freedom [6–8], the magnetic compo-
nent is to be present in the plasma as well.

In the string picture one postulates the existence of
electric strings which can be open on external quarks
(Wilson line) and of magnetic strings which can be open
on external monopoles (’t Hooft line). At T � 0, the elec-
tric strings have a nonzero tension, measured through the
Wilson line. One of the earliest proposals for the mecha-
nisms of deconfinement is percolation of electric strings

[9]. Generically, percolation means that there is large
(potential) energy E and large entropy S which cancel
each other. Thus, within this mechanism it is long strings
which become tensionless and percolate. Lattice data [10]
provide evidence for large entropy S � ��@F=@T�V of the
electric strings, since the average of the Wilson line hWi �
exp��F=T� can directly be related to free energy F � E�
TS. The potential energy continues to grow above the
phase transition, Tc < T < 2Tc, and the entropy reaches
values of the order of 10, see Ref. [10].

On the lattice, the phenomenon of strong cancellation
between energy and entropy was discovered first for mag-
netic strings [11]. At zero temperature magnetic strings
percolate through the vacuum and provide disorder which
causes confinement. Percolating strings are directly ob-
servable on the lattice and are known as center vortices
[7]. Non-Abelian action associated with the strings is
ultraviolet–divergent, Sstrings � �Area�strings=a2, where a
is the lattice spacing. The total area of the strings, on the
other hand, is a finite quantity in physical units,
h�Area�stringsi ��2

QCDV4d. If there was no cancellation be-
tween the string energy and the string entropy, the area of
the strings would be in lattice units as well. Note that there
is no area law for the ’t Hooft loop at T � 0 and therefore
the tension of the magnetic string vanishes. Within
large-Nc dual formulations this relation is satisfied explic-
itly [2].

Quantum mechanically, the lowest string mode is ta-
chyonic. The tachyonic mode corresponds to the monopole
condensation [8]. Since there is only a single tachyonic
mode of the string, the string percolation can in fact be
projected into percolation of monopoles [11].

A link between percolation and field theory is provided
by the polymer formulation of field theory in Euclidean
space [12]. One starts with classical action of a free parti-
cle, Scl � M � L, where M � M�a� is a mass parameter
and L is the length of trajectory. By evaluating the
Feynman path integral for the particle propagator one
learns that the propagating (physical) mass is in fact
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 m2
phys �

C0

a

�
M�a� �

Centr

a

�
; (2)

where the constants are known explicitly for a particular
(lattice, for example) regularization. The tachyonic case
corresponds, as usual, to m2

phys < 0. The tachyonic mode is
manifested as an infinite, or percolating cluster. To ensure
m2

phys ��2
QCD the bare mass parameter M�a� and the en-

tropy factor, Centr=a in Eq. (2) are to be fine tuned. This
crucial condition of fine tuning between energy and en-
tropy is satisfied for the lattice monopoles [11]. Moreover,
percolation of the monopole at short distances can be
understood within the approximation (2), while at large
distances the properties of the monopole currents corre-
spond to a constrained system [13]. Observationally, the
constraint is that the monopoles live on two-dimensional
surfaces, or strings; for a review see [14].

It is a generic field-theoretic phenomenon that particles
which are virtual at T � 0, are becoming real at finite
temperature and released into the thermal plasma. In our
case, there exists a tachyonic monopole mode which is to
disappear at the point of the phase transition, with mag-
netic strings emerging into the plasma [15]. In order to
realize a tempting opportunity to check this picture from
the first principles offered by Euclidean lattice simulations,
one should be able to distinguish between real and virtual
particles in the Euclidean formulation of the theory. The
problem is that even real particles in the Euclidean space
are off-mass-shell.

Let us first address the problem of detection of real
particles in lattice simulations in case of a free scalar field
(for a related discussion see Refs. [16,17]). Since the
monopoles are observed as closed trajectories on the lat-
tice, it is appropriate to utilize the polymer representation
[12]. At zero temperature a typical monopole ensemble
consists of a large number of finite clusters of the mono-
pole trajectories corresponding to virtual particles and one
infinite cluster associated with condensed (tachyonic)
monopoles. As temperature increases, the infinite cluster
disappears since the monopole condensate vanishes at the
deconfinement temperature. We point out that the mono-
pole condensate melts down into real thermal particles,
which contribute to the magnetic content of the thermal
plasma.

In the imaginary time formalism the finite temperature T
is imposed via compactification of the time direction, x4

into a circle of length 1=T, and the points x � �x; x4 �
s=T�, s 2 Z, are identified. In the language of trajectories,
the integer number s has the meaning of the wrapping
number. It is obvious that properties of thermal particles
are encoded in the wrapped trajectories, s � 0, and the
virtual particles are nonwrapped, s � 0.

The propagator of a scalar particle is given by

 G�x� y� /
X
Px;y

e�Scl�Px;y	;

where the sum is over all trajectories Px;y connecting points
x and y. Evaluation of the propagator at a finite temperature
T is a straightforward generalization of the T � 0 case
[12]. The propagator in momentum space,

 G s�p� �
Z
d3xe�i�p;x�G�x; t � s=T� (3)

is related to the thermal distribution of the particles

 fT�!p� �
1

2

Gwr�p�
Gvac�p�

; Gwr 

X
s�0

Gs; Gvac 
 G0;

(4)

given by the Bose-Einstein formula fT � 1=�e!p=T � 1�,
where !p � �p2 �m2

phys�
1=2.

Equation (4) demonstrates that wrapped trajectories in
the Euclidean space correspond to real particles in
Minkowski space. However, the normalization to the per-
turbative T � 0 propagator, Gvac � 4=�a2!p�, is awkward
since it depends explicitly on the lattice spacing. Also, we
do not expect in fact that the magnetic fluctuations of the
Yang-Mills plasma—as probed by the lattice mono-
poles—correspond to free particles. As it is emphasized
above, the monopoles represent only a component of the
whole plasma and their properties are to be constrained by
the environment.

Moreover, one can explicitly show that the average
number of wrappings s in a time slice of volume V3d is
most directly related to the density of real particles

 ��T� � nwr � hjsji=V3d; (5)

where, in the case of the free particles,

 ��T� �
Z d3p
�2��3

Nd:f:

e�!p���=T � 1
; (6)

and � is the (positively defined) chemical potential con-
trolling the particle number. A similar relation is known for
a gas of nonrelativistic scalar particles [17] and goes back
to the Feynman’s theory of �-transition in 4He [18].

The interaction of the monopoles with the environment
is expressed, in particular, in the number of effective
degrees of freedom Nd:f: and in the nonzero chemical
potential � to be discussed below. We will treat Eq. (5)
as definition of the density of thermal particles in the
imaginary time formalism.

Thus, the density of the thermal particles ��T� corre-
sponds to the vacuum expectation of the number of the
wrapped loops. By measuring the number of wrappings (in
the Euclidean space) one can learn density of real particles
at finite temperature (in Minkowski space).

A change of the character of the monopole trajectories in
Euclidean lattice simulations near the point of the phase
transition has been observed and discussed in many papers;
see, in particular, [16,19]. The change, indeed, is the dis-
appearance of the percolating cluster and the emergence of
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wrapped trajectories. Quantitatively, only a part of the
percolating (tachyonic) cluster goes into the wrapped
monopole trajectories, while the other part is released
into the vacuum as virtual particles.

We conclude that, qualitatively, there is little doubt that
at T � Tc there is transition of a part of the tachyonic mode
into degrees of freedom of the thermal plasma. This is a
spectacular phenomenon by itself and is a proof of reality
of a magnetic component of the gluon plasma.

To be quantitative, we need a detailed lattice data on the
wrapped trajectories. In the case of pure SU�2� gauge
theory there is relevant data in the literature; see, in par-
ticular, Refs. [16,19]. The most detailed data [19] refer,
however, rather to the length density than to the number
density (5) of the wrapped trajectories

 �wr 
 Lwr=V4d; V4d 
 V3d=T; (7)

where Lwr is the total length of the wrapped trajectories in
the volume V4d. The expression for the density of the
wrapping number which enters the relation (5) can be
obtained from (7) by replacing the total length of the
wrapped trajectories Lwr by its projection on the time
axis. The two expressions coincide in the limit of static
trajectories. In reality, the approximation of static trajecto-
ries for the wrapped loops is reasonable. Also, it has been
checked [19] that the density (7) is independent on the
lattice spacing and scales in the physical units, as is ex-
pected for the density of the wrapping number. Thus, we
use the data [19] on the wrapped trajectories to estimate the
density of real monopoles in plasma.

The data indicate existence of two distinct regions in the
deconfinement phase: the first region covers the range of
temperatures Tc < T < 2Tc, and the second region corre-
sponds to the higher temperatures T > 2Tc. In the first
region the density of the thermal monopoles is almost
insensitive to the temperature [16,19]

 ��T� � T3
c �Tc < T < 2Tc�: (8)

The numerical value of the density—corresponding, ap-
proximately, to 3.5 monopoles per cubic Fermi—is com-
parable to the density of monopoles in the monopole
condensate which amounts to approximately 7.5 mono-
poles per cubic Fermi at zero temperature [20]. Thus, a
sizable fraction of the T � 0 condensate is released at the
transition region into the vacuum as thermal particles.

It is instructive to compare the ratio (8) with a limit of
free relativistic particles. Then the ratio (8) at T � Tc
would be equal or smaller than a well-known number,
��3�=�2 � 0:12. Thus, the monopole medium just above
the critical temperature is an order of magnitude denser
than the ideal gas estimate. This fact, along with the
observation that the monopole density is independent on
temperature, allows us to suggest that in the region Tc <
T < 2Tc the monopoles form a dense (magnetic) liquid.

There is another radical difference between the magnetic
monopole constituents of the Yang-Mills plasma and free
particles. For free particles, the wrapped trajectories are not
static at all. Moreover, the density of the wrapped trajecto-
ries diverges at small lattice spacings a as �free

wr � T2=a. On
the other hand, the available lattice data [19] provides no
indication of such a divergence and this can be explained
only by specific constraints, encoded, for example, in
chemical potential for the monopole trajectories, or in the
constraints that monopole trajectories belong to surfaces;
see also [13].

Starting from T � 2Tc the density of particles associ-
ated with the wrapped trajectories grows,

 ��T� � �0:25T�3 �T > 2Tc�; (9)

where we drop subleading terms in the asymptotic limit
T ! 1. If we again compare (9) with the ideal gas case,
then in the asymptotic limit the monopoles take much less
than 1 degree of freedom [21].

According to the dimensional reduction arguments,
valid at high temperature [22] nonperturbative physics is
described by 3d magnetodynamics which corresponds to
zero Matsubara frequency of the original 4d theory. In
terms of the monopole trajectories, the restriction to the
zero Matsubara frequency implies that the wrapped trajec-
tories become static. And, indeed, trajectories of 4d mono-
poles become static at higher temperature. According to
Refs. [23,24] description of monopoles in terms of 3d, or
static trajectories and 4d wrapped trajectories match each
other at T � 2:4Tc.

Matching with the dimensional reduction allows for an
important consistency check of Eq. (5). Namely, as far as
the monopole trajectories are static and, consequently,
nonintersecting, they could be treated within a 3d theory
[25] utilizing methods of [26]. Then the density (5) is
equivalent to counting of monopoles trajectories. This
procedure is true also in case of strong interaction between
the monopoles provided they are static. The dimensional
reduction implies that the monopole density is

 ��T� � C�g
6
3d�T� /

�
T

logT=�QCD

�
3

T � Tc; (10)

where C� is a temperature-independent parameter.
Numerically, Eqs. (9) and (10) are compatible with each
other within accuracy of the available lattice data.

The temperature dependence exhibited by Eq. (10) can
be reproduced by Eq. (5) provided that there exists
temperature-dependent chemical potential [21]

 �� T logg�6
4d �T� � 3T log logT=�; (11)

which suppresses the monopole density (6) by the loga-
rithmic factor, expf��=Tg � g6

4d�T� � 1=log3�T=��.
Thus, the evolution of the magnetic component of the

Yang-Mills vacuum can schematically be represented as

PRL 98, 082002 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007

082002-3



 

condensate
�T < Tc�

���! magnetic liquid
�Tc < T < 2Tc�

���! gas
�T > 2Tc�

(12)

In the confinement region the magnetic monopoles con-
stitute a colorless tachyonic state known as the monopole
condensate while in the deconfinement state they form at
first a magnetized liquid and then a gas. In terms of the
strings, percolation of both magnetic and electric strings
at T > Tcr ensures area law for both spatial Wilson and
’t Hooft loops; see (1) [27].

Because of the limited accuracy of the lattice data ex-
istence of the chain (12) is established rather on qualitative
level. Further numerical studies seem to be well justified.

In conclusion, let us emphasize the analogy between
phenomena in Yang-Mills theory with physics of super-
fluidity. In the case of liquid helium there exist a superfluid
and ordinary components of liquid. With increasing tem-
perature, particles from the superfluid component are
transferred to the ordinary-liquid component [28]. This is
an analogy to the deconfinement phase transition with
vacuum condensate vanishing and magnetic degrees of
freedom being released into the plasma around T � Tc.
In terms of the monopole trajectories, the transition is from
percolation in all directions to time-oriented trajectories.
The total density of percolating and wrapped trajectories
remains approximately the same, in analogy with a super-
fluid. The ‘‘ordinary-magnetic-liquid’’ component might
be responsible for the low viscosity of the plasma.

At higher temperature, T > 2Tc, the density of the mag-
netic component grows and approaches the perturbative
regime, ��T� � T3. This is an analog of evaporation of the
liquid. One might expect that beginning with temperatures
T � 2Tc the properties of plasma change gradually to-
wards predictions of perturbation theory.
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