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We calculate perturbatively the effect of a dipolar interaction upon the Bose-Einstein condensation
temperature. This dipolar shift depends on the angle between the symmetry axes of the trap and the
aligned atomic dipole moments, and is extremal for parallel or orthogonal orientations, respectively. The
difference of both critical temperatures exhibits most clearly the dipole-dipole interaction and can be
enhanced by increasing both the number of atoms and the anisotropy of the trap. Applying our results to
chromium atoms, which have a large magnetic dipole moment, shows that this dipolar shift of the critical
temperature could be measured in the ongoing Stuttgart experiment.
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Ultracold atomic quantum gases are many-body systems
in which macroscopic quantum phenomena can be studied
experimentally over a wide range of controllable interac-
tions [1-3]. For the original alkali atomic Bose-Einstein
condensates (BECs) it has been sufficient to describe the
dominant two-particle interaction by a local isotropic con-
tact potential. Recently, a new type of nonlocal anisotropic
interaction has been made accessible to detailed study by
the formation of a BEC in a dipolar quantum gas of >Cr
[4]. Chromium atoms possess a magnetic dipole moment
of 6 mg, where mp is the Bohr magneton; i.e., it is around 6
times larger than those of alkali atoms. It stands for a whole
class of high spin atoms like rare earth atoms with large
magnetic dipole moments (Dy [10 mp], Ho [9 mg], Eu [7
mgl, Tb [10 mg], Er [7 mg], Mo [6 mg], Mn [5 mg], Tm [4
mg], Pr [3.3 mg]). Note that these elements have been
already cooled by buffer gas and evaporative cooling tech-
niques down to mK temperatures [5]. Besides that, Er [7
my] has recently been laser cooled [6]. Other many-body
systems with dipolar interactions are, for instance,
Rydberg atoms [7,8] or atomic condensates where a strong
electric field induces electric dipole moments of the order
of 1072 Debye [9]. Body-centered dipole moments in
heteronuclear molecules are much larger with typical val-
ues of 1 Debye, so their dipolar effects could be a few
hundred times stronger than those of chromium atoms
[10,11]. Such a gas of ultracold heteronuclear molecules
is produced either by sophisticated cooling and trapping
techniques [12,13] or by photoassociation [14—16]. For all
those dipolar systems the total two-particle interaction
potential is modeled by
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Here m denotes the magnetic (electric) dipole moment of
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the atoms, w stands for the magnetic field constant (the
reciprocal electric field constant), and M is the atomic
mass. A more general pseudopotential for anisotropic in-
teractions has recently been introduced in Refs. [17,18]
which is nonlocal in momentum space. Since there exists
up to now no experimental evidence for any dipolar shape
resonance, where such a more general pseudopotential
could be relevant, our model (1) is valid for all current
and many future experimental situations. The dimension-
less measure of the strength of the dipole-dipole interaction
with respect to the s-wave scattering is €pp =
wom>M/(127rh?a) [19]. For the 32Cr condensate it has
the value epp = 0.144 [20], so the magnetic dipolar inter-
action represents only a small correction to the contact
interaction. Nevertheless, it has interesting consequences
due to its anisotropy, as has been observed in a recent
expansion experiment [21]. Furthermore, the magnetic
dipole-dipole interaction can be varied within a limited
range with the help of rotating magnetic fields as proposed
by Ref. [22]. Combining this technique with the now
known 14 Feshbach resonances of chromium atoms [20]
will allow experiments where the interaction varies from
only contact to purely dipolar. In this way, many interesting
predicted dipolar phenomena should be observed. Among
them are, for instance, the stability of the ground state of a
dipolar BEC [23-25] or its excitation spectrum [26]. Note
that it has been recently suggested in Refs. [27,28] that the
s-wave scattering length a could strongly depend on the
dipole moment. However, there it has also been shown that
for dipolar interaction strengths, which are not larger than
the s-wave scattering strength, the latter is only rescaled by
a moderate factor and remains positive. For the calcula-
tions in the present work we assume that this condition is
fulfilled. In this Letter, we investigate how the critical
temperature of a dipolar BEC depends on the dipole-dipole
interaction. Consider an atomic gas trapped in a cylinder-
symmetric harmonic potential
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whose dipole moments m have the angle « with the z axis,
i.e., m = m(sina, 0, cosa). In particular, we are interested
in the two extreme configurations I and II where the
symmetry axis of the dipole moments is parallel (¢ = 0)
and perpendicular (o = 77/2) to the symmetry axis of the
harmonic trap (2), respectively. Figure 1 illustrates the two
cases for | < w |, where the atomic dipole moments lead
to a residual attractive and repulsive interaction, respec-
tively. At first we show that the corresponding critical
temperature in configuration I and II is shifted above and
below the value of a pure contact interaction. Subse-
quently, we suggest to determine the difference of the
critical temperatures in both configurations I and II to
cancel out the influence of the isotropic contact interaction.
We shall estimate which experimental parameters allow us
to enhance this signal. For a pure contact interaction, the
harmonic trap suppresses long-wavelength fluctuations, so
the leading shift of the critical temperature can be calcu-
lated perturbatively (see, for instance, the recent work [29]
and the references cited therein). We expect that this
reasoning also holds for our model interaction (I).
Although the dipolar interaction is nonlocal, its scaling
properties are the same as for a contact interaction. In
this Letter we apply Feynman’s diagrammatic technique
of many-body theory [30,31] and expand the grand-
canonical free energy as
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The first term denotes the contribution of an ideal Bose gas
at temperature T = 1/kg 8 where the harmonic trap poten-
tial (2) is treated semiclassically [32]

FO=- ) 4)

1

- - Bu
papar ¢

It contains the chemical potential ., the geometric mean of
the trap frequencies @ = (oj®?)'/3, and the polylogar-
ithmic function ¢,(z) = Y52, z"/n®. The two diagrams in
Eq. (3) represent the direct and the exchange vacuum
contribution, respectively, and have to be evaluated accord-
ing to the Feynman rules: a straight line with an arrow

Y
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FIG. 1 (color online). Symmetry axes of harmonic trap (2) and
two-particle interaction (1) are parallel and perpendicular in
configuration I and II.

represents the semiclassical interaction-free correlation
function:
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where w,, = 277m/hB denotes the Matsubara frequency.
The two-particle interaction potential enters via the dia-
gram
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The grand-canonical free energy (3) is studied as a function
of temperature T for fixed particle number N = —9 F /o u.

The phase transition, where a macroscopic occupation
of the ground state sets in, occurs when the correlation
function of the system diverges. From Eq. (5) we can see

that this happens in the interaction-free case at ,u(co) =0, as
the divergence appears at the minimum of the trap potential
V(x) for vanishing Matsubara frequency w,, and momen-
tum p. In the presence of a 2-particle interaction, the full
correlation function follows from a formula similar to (5)
where the chemical potential p is shifted by the self-
energy: u — u + h3(p, w,,;x). It is defined by the
Fourier-Matsubara transformed
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of the Feynman diagrams
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The critical chemical potential reads now [33]
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which leads to u.= —h2(0,0;0) up to first order.
Thus, evaluating the particle number N = N(u) at the
critical chemical potential w = u, yields the follow-
ing first-order shift of the critical temperature with respect

to the interaction-free critical temperature TEO) =
ha[N/¢(3)]'3 /kg:
AT, M
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Here {(a) = >>_, 1/n" is the Riemann zeta function and
A = (27h?B/M)"/? the thermodynamic de Broglie wave-
length. The dimensionless prefactor ¢4 for the 6 interaction
has the value

cs = ﬁ[(@){(z) - ZG%%H ~ 3426 (11)
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with the generalized Riemann zeta function {(a, b, ¢) =
S 3% 1/nn'*(n + n')°, whereas the dimensionless
prefactor f(x) for the dipole-dipole interaction is a func-
tion of the ratio of the trap frequencies k = wj/w :

2k%+1 _ 3xartanhv1—k?
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This function was already used in Ref. [19] to describe the
mean-field magnetic dipole-dipole energy for a cylindri-
cally symmetric BEC. Note that f(k) tends asymptotically
to —2 for k — o and 1 for « — 0, respectively. The
general physical implications of our first-order perturbative
result (10) are as follows. Without the dipole-dipole inter-
action, i.e., at m = 0, the critical temperature is shifted
downwards with the dimensionless prefactor (11). This
result for the isotropic contact interaction was originally
derived in Ref. [34] within a mean-field approach and
confirmed experimentally by investigating the onset of
Bose-FEinstein condensation in the hyperfine ground state
of 3Rb [35]. Our result (10) for m # 0 shows that the
critical temperature is increased in configuration I (& = 0)
twice as much as decreased in configuration Il (o = 7/2)
of Fig. 1 for the trap anisotropy @ < w,, due to the
dipole-dipole interaction. Of course, changing the angle
« allows us to tune the dipolar effect between these maxi-
mal and minimal values. In particular, we read off from
Eq. (10) that the dipolar shift of the critical temperature
vanishes for the magic angle a, = arccos(1/+/3) = 54.7°
[22].

Now we discuss the consequences of our results for the
ongoing experiments on the Bose-Einstein condensation of
2Cr atoms at the University of Stuttgart, where the trap
frequencies are w; = 27 X 581 Hz, w, = 27 X 406 Hz,
w3 = 27 X 138 Hz, so that the geometric mean frequency
is @ = 27 X 319 Hz. The total number of atoms is N =
100 000, yielding an interaction-free critical temperature
of about T = 670 nK. The corresponding finite-size
correction was calculated in Refs. [36,37]

AT (D
<T£°>>Fs 2023(3)@N1/3

where @ is the arithmetic mean of the trap frequencies
@ =~ (w| + wy, + w3)/3 =27 X375Hz. Thus, the finite-
size correction of TEO) in the Stuttgart experiment amounts
to —1.8%. This is to be compared with a shift of the critical
temperature due to the contact and the magnetic dipole-
dipole interaction following from formula (10). The
s-wave scattering length of the 3>Cr atoms is a = 105a,
[20], i.e., roughly 2% of the thermodynamic de Broglie

13)

wavelength )\(CO) = 5598ap. The corresponding downwards
shift of the critical temperature amounts then to 6.4%. This
is modified by the dipole-dipole interaction depending
on the experimental setup. In the Stuttgart experiment,
the trap potential has actually three different frequencies

but, since w; and w, are not far apart, we may identify
w) = Jo,0;, =27 X486 Hz and o = w3, yielding
w/w; = 0.284. In configuration I we obtain from (12)
the result f(w)/w,) = 0.733, which leads via Eq. (10) to
an extra upward shift of the critical temperature by 0.34%
due to the magnetic dipole-dipole interaction. The down-
ward shift in configuration II is half as big. Figure 2(a)
plots the resulting total shift of the critical temperature AT,
for the >Cr gas with respect to the interaction-free critical
temperature T versus the particle number N. Both the
finite-size corrections and the contact interaction lead to
the main shift, on top of which the small dipolar effect is
seen. Figure 3(a) shows how the same shifts depend for
N = 10° chromium atoms on the anisotropy parameter
w|/w . The directions of the shifts change sign at the
isotropy point @ = w | . The above results suggest to plot
the difference between the critical temperatures of the two
configurations I and II. This eliminates the isotropic effects
of both the contact interaction and the finite-size correc-
tion; thus it exhibits most clearly the magnetic dipole-
dipole interaction. For N = 10° and @ = 27 X 319 Hz,
the difference amounts to a net effect of 0.51% of the

interaction-free critical temperature 7. One possibility
to enhance the difference of the critical temperatures is to
choose a convenient anisotropy strength w/w, of the
harmonic trap potential as seen in Fig. 3(b). Furthermore,
this dipolar effect increases with the total atom number N
and the geometric mean frequency @ as shown in Fig. 2(b),
which therefore needs to be as large as possible. An
experimentally feasible increase of the particle density in
the trap could lead to a dipolar effect of more than 2%, see
dashed curve of Fig. 3(b). At present, the best experiments
which measure the critical temperature of a Bose-Einstein
condensate involve error bars of 5% which represent the
total systematic and statistical errors [4,35]. The systematic
errors, however, can be eliminated by our suggestion to
measure the difference of two critical temperatures. We
expect that the remaining statistical errors can be reduced

GNY3/[10° Hz)
1 2 3

FIG. 2. (a) Shift of the critical temperature AT, with respect to
the interaction-free critical temperature 7 for a 2Cr gasin a
harmonic trap with frequencies w) = 277 X 138 Hz and w; =
27 X 486 Hz: without (straight line) and with (dashed line)
magnetic dipole-dipole interaction for the configurations I and
II of Fig. 1. (b) Difference of the temperature shifts increases
with particle number N and geometric mean frequency @&. The
respective dots indicate the parameters of the Stuttgart 2Cr
experiment.
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FIG. 3. (a) Shift of the critical temperature AT, with respect to
the interaction-free critical temperature 7O for N = 10° 2Cr
atoms gas vs anisotropy parameter o)/ of the harmonic trap
without (straight line) and with (dashed line) magnetic dipole-
dipole interaction for the configurations I and II of Fig. 1.
(b) Difference of the temperature shifts versus anisotropy pa-
rameter w/w, for ®N'3 =0.93 X 10° Hz (solid line) and
@N'/3 = 3 X 105 Hz (dashed line). The respective dots indicate
the parameters of the Stuttgart 3>Cr experiment.

to 1% by averaging both atom number and critical tem-
perature over many measurements. So far, the dipolar
nature of the chromium BEC has only been resolved in
expansion experiments [21]. The analysis of this Letter
shows that it could be possible to detect a signal of the
underlying magnetic dipole-dipole interaction also by
measuring the critical temperature. Furthermore, our re-
sults will be useful for other dipolar systems with a tunable
dipole moment, like heteronuclear molecules in low vibra-
tional states [12-16], where the dipolar effect will be
larger.

We thank A. Berra and S. Kling for discussions and DFG
Priority Program No. SPP 1116 as well as No. SFB/TR 21.
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