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Particle systems admit a variety of tensor product structures (TPSs) depending on the algebra of
observables chosen for analysis. Global symmetry transformations and dynamical transformations may be
resolved into local unitary operators with respect to certain TPSs and not with respect to others.
Symmetry-invariant and dynamical-invariant TPSs are defined and various notions of entanglement are
considered for scattering states.
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The interaction of particle systems via scattering is a
fundamental theoretical and experimental paradigm. The
quantum information theory of particle scattering is, how-
ever, still in its infancy. Results, theoretical and computa-
tional, exist for the entanglement between the momenta [1]
as well as the angular momenta [2] of two particles gen-
erated in scattering, but many problems remain open. The
challenges are partly technical due to the greater complex-
ity of entanglement in continuous variable systems [3] and
partly conceptual as in defining an entanglement measure
with meaningful properties under space-time symmetry
transformations. See, for example, the literature on spin
entanglement of relativistic particles [4,5], where different
types of entanglement (between two particles, between
two particles’ spins, and between a single particle’s spin
and momentum) have been discussed and occasionally
confused.

In this Letter, we examine how some of these dif-
ficulties may be resolved by combining two approaches:
(1) the generalized tensor product structures (TPSs) and
observable-dependent entanglement developed by Zanardi
and others [6], and (2) the representation theory of space-
time symmetry groups, which has a long and fruitful
history in quantum mechanics. Using these methods,
TPSs for single particle and multiparticle systems are ex-
plored. These methods allow one to distinguish between
TPSs that are symmetry invariant and/or dynamically in-
variant and TPSs that are not, and, in the latter case, to
obtain quantitative expressions for the change of entangle-
ment. The reason why certain TPSs have entanglement
measures which are symmetry or dynamically invariant is
that the space-time symmetries or the time evolution op-
erator, respectively, act as a product of local unitaries with
respect to these TPSs.

As an application of these general concepts and meth-
ods, we will study nonrelativistic elastic scattering of two
particles. In this context, several interesting results emerge.
First, there are single particle TPSs that are invariant under

transformations between inertial reference frames, and
these TPSs allow one to define intraparticle entanglement
between momentum and spin degrees of freedom in a
Galilean invariant manner. Second, there are multiple,
inequivalent two particle TPSs that are symmetry invariant.
In particular, these TPSs can be used to define Galilean
invariant entanglement between the internal and external
degrees of freedom of the two particle system. Finally, this
internal-external entanglement is also dynamically invari-
ant; i.e., it is conserved during any nonrelativistic elastic
scattering processes.

Single particle TPSs.—The symmetry group of nonre-
lativistic space-time is the Galilei group in 3� 1 dimen-
sions, G � fg � �b; a; v; R�g, where b 2 R is a time
translation, a 2 R3 a space translation, v 2 R3 a velocity
boost, and R 2 SO�3� [or u 2 SU�2� ! R�u� 2 SO�3�,
the standard 2-to-1 homomorphism] is a rotation. The
associated generators fĤ; P̂; Q̂; Ĵg for unitary representa-
tions of G form a basis for the Galilei algebra. In quantum
physics, what is relevant is (the covering group of) G
extended by the central charge of mass and the mass
operator M̂ can be added to the center of this operator
algebra. The mass-extended enveloping algebra includes
the position operator X̂ � Q̂M̂�1, the orbital angular
momentum operator L̂ � X̂� P̂, and the intrinsic spin
operator Ŝ � Ĵ� L̂. The internal energy Ŵ � Ĥ�
�2M̂��1P̂2, intrinsic spin squared Ŝ2, and (trivially) mass
M̂ commute with the entire enveloping algebra. In a unitary
irreducible representation (UIR) of G, these invariant op-
erators are proportional to the identity, M̂ � mI, Ŵ � WI,
Ŝ2 � s�s� 1�I and characterize the representation Hilbert
space H �m;W; s� [7,8]. For a single particle, we may
always set W � 0.

The UIR Hilbert space H �m;W; s� can be realized as L2

functions defined on the Cartesian product of the spectra of
a complete system of commuting observables (CSCO). A
variety of such CSCOs exist and choosing one is equivalent
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to constructing the UIR. A standard choice for a CSCO
consists of the momentum P̂ and the spin component Ŝ3,
along with the invariants M̂, Ŵ, and Ŝ2. Then,

 H �m;W; s� �H p �H s ! L2�R3� � C2s�1: (1)

The choice of CSCO fP̂; Ŝig induces the TPS (1) on the
single particle state space, and based on this TPS, one can
define intraparticle entanglement between momentum de-
grees of freedom and spin degrees of freedom.

The action of U�g� on ���p� 2H �m;W; s� is [8]
 

�U�g�����p� � e�i�1=2�ma�v�ia�p0�ibE0

�
X
�0
Ds�R	�p; E�; ~g
��0���0 �p0�; (2)

where g � �b;a; v; R�, p0 � Rp�mv, E � 1=�2m�p2 �
W, E0 � E� v � p� 1=�2m�v2, ~g � �0; 0; v; R�, and
fR	�p; E�; ~g
g is an element of the ‘‘little group’’ of G
for a massive particle. Recall that the little group is the
largest subgroup that leaves a standard momentum-energy
pair (p0, E0) invariant. For a massive particle, the
little group of both the Galilean and Poincaré groups is
isomorphic to the rotation group, and therefore, the
Ds�R	�p; E�; ~g
� is simply the unitary 2s� 1 dimensional
representation of the rotation group. By definition, the little
group depends on the choice of (p0, E0) which is arbitrary
aside from the constraint E� 1

2mp2 � W. However, all of
these different choices lead to equivalent representations of
G [7,8], and therefore we may use any momentum-energy
pair (p, E) to construct the general expression for the
representation. The choice (0, W) is particularly simple
in that fR	�0; W�; ~g
g � R; i.e., the little group of G can be
chosen to be SU�2�, independently of the momentum and
energy of the particle. Then, (2) becomes

 �U�g����p� � e�i�1=2�ma�v�ia�p0�ibE0
X
�0
Ds�R��0���0 �p0�:

(3)

The following important property is evident in (3): the
unitary operators U�g� factor into separate unitary opera-
torsU�g� � U�g�p �U�g�s acting on each Hilbert space in
(1). In other words, the unitary operators corresponding to
Galilean transformations are local unitary operators with
respect to the TPS (1). Thus, intraparticle entanglement
between the spin and the momentum of a free, nonrelativ-
istic particle is invariant across inertial reference frames.
We note that this is very different from the relativistic case,
where the UIR does not factor and so momentum-spin
entanglement is not invariant under coordinate transforma-
tions even for free particles [5].

We call a TPS symmetry invariant if there exists a
representation U of some group G that factors with respect
to this TPS, U�G� � U1�G� �U2�G� � � � � . It is notewor-
thy that we do not require that each Ui�G� be a nontrivial
UIR of the entire groupG; the representation U�g�s that (3)
furnishes in C2s�1 of (1) has the noncompact part of G
trivially represented by the identity.

From such a symmetry-invariant CSCO one can gener-
ally construct new invariant TPSs. For instance, applying a
unitary transformation of the form U � Up � Is to the
Hilbert space (1) one can get to a new Galilean invariant
TPS corresponding to the transformed CSCO,
UfP̂; Ŝ3gU�1. As an example, Fourier transform the first
factor to get the CSCO fX̂; Ŝ3g: L2�R3� � C2s�1 !
L2�R3� � C2s�1. Or, transform to spherical coordinates to
get the CSCO fP̂; �̂; �̂; Ŝ3g: L2�R3� � C2s�1 ! �L2�R�� �
L2�S2�� � C2s�1. Finally, choose a CSCO like
fĤ; L̂2; L̂3; Ŝ3g, thereby exploiting harmonic analysis to
reduce functions on the two-sphere S2 to an infinite series
with the spherical harmonics as basis functions: �L2�R�� �
L2�S2�� � C2s�1 ! �L2�R�� � f

L
lC

2l�1g� � C2s�1. In the
TPSs for all of these CSCOs, the part of the UIR that acts
on the intrinsic spin Hilbert space can be separated from
the part that acts on the rest.

There are, of course, many noninvariant TPS structures
of H �m;W; s�. For example, the TPS induced by the
CSCO fĤ; L̂2; Ĵ2; Ĵig can be written as L2�R�� �

f
L

j�C
2j�1 � Cdj�l;s��g, where dj�l; s� is a degeneracy pa-

rameter that describes the number of times total angular
momentum j appears in the coupling of l and s. This TPS is
not invariant as the action of U�g� in each subspace de-
pends on variables in the other. In general, how a particular
TPS transforms under a symmetry group is known when
the group representation is well defined with respect to that
TPS. Given an entanglement measure defined in terms of
the states, it is therefore possible to compute the change of
entanglement due to the transformation of states under this
symmetry group. In particular, it is possible to compute the
time evolution of entanglement for a TPS.

Two free particle TPSs.—The total Hilbert space for the
two particle states is the tensor product

 H �H A �H B; (4)

where H N �H �mN;WN; sN�. The representation of G
on H factors into a direct product of UIRs. With respect to
CSCO fP̂A; ŜAi ; P̂

B; ŜBi g, the unitary nonirreducible repre-
sentation U�G� � UA�G� �UB�G� is given by

 U�g���pA;pB��A;�B � e�i�1=2�mAa�v�ia�p0A�ibE
0
Ae�i�1=2�mBa�v�ia�p0B�ibE

0
B

X
�0A�

0
B

DsA�R��0A�AD
sB�R��0B�B��p

0
A;p

0
B��0A;�

0
B
: (5)

Note that while the factorization of (5) with respect to the TPS (4) implies that interparticle entanglement is invariant under
Galilean relativity, it does not imply that the vectors ��pA;pB��A;�B are not entangled.
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That the TPS H A �H B is an invariant TPS has noth-
ing to do with the structure of G; rather, it is a general
property that holds for any TPS constructed by the direct
product of UIR spaces for any group. In contrast, the
invariance of the single nonrelativistic particle TPS (1) is
a specific property of the Galilean group. Using (1), we find
that any partition of H in terms of the four factors in H pA ,
H sA , H pB , H sB leads to a Galilean invariant TPS. There
are many possibilities, but, in particular, the bipartite par-
tition H � �H pA �H pB� � �H sA �H sB� has clear
physical relevance: the entanglement between all the mo-
mentum degrees of freedom and all the spin degrees of
freedom is a Galilean invariant [9].

Other symmetry-invariant TPSs exist for the two particle
case. For simplicity, consider spinless particles. The
change of variables to total and relative momentum

 P � pA � pB; q �
1

mA �mB
�mBpA �mApB� (6)

gives rise to the unitary transformation
 

H pA �H pB !H P �H q

L2�R3� � L2�R3� ! L2�R3� � L2�R3�:
(7)

Applying (6) to the state ��pA;pB� of (5) and using the
notation M � mA �mB and � � mAmB=M, we find

 U�g� ~��P;q� � e�i�1=2�Ma�v�ia�P0�ibE0 ~��P0;q0�; (8)

where P0 � Rp�Mv, q � Rq0, E � 1=�2M�P2 �W,
E0 � E� v � P� 1=2Mv2 and W � WA �WB �
1=�2��q2. The only term that depends on q is E0 and it
factors from the rest. Therefore, (8) acts as local unitaries
on the TPS H p �H q (7). This shows that the entangle-
ment between the P and q degrees of freedom, which we
refer to as the internal-external (IE) entanglement, is
Galilean invariant with respect to the TPS (7). When solv-
ing the bound state problem, one typically assumes that
there is no IE entanglement and so the wave function for
the net motion can be factored out from the internal wave
function. As understood in the context of the hydrogen
atom [10], having zero internal-external entanglement cer-
tainly does not imply that there is no interparticle entan-
glement, i.e., entanglement with respect to the TPS (4).

The transformation of variables (6) and of TPS (7) is the
first step in finding the Clebsch-Gordan series for the
reduction of the direct product of UIRs of G to a direct
sum [8] (partial wave analysis). One way of writing this
direct sum reduction (including spin) is

 H �mA;WA; sA� �H �mB;WB; sB�

�
Z 1
W�WA�WB

dW
M1
j�jmin

H �M;W; j� � Cdj�l;sA;sB�: (9)

There is no sum over mass in the Galilean case, but there is
a sum over internal (or center-of-mass) energy W and
intrinsic (or total center-of-mass) angular momentum j,

where jmin � 0 if both particles are either fermions or
bosons and jmin � 1=2 otherwise. Since the Galilean group
is not simply reducible, the same UIR space H �M;W; j�
appears a number of times, dj�l; sA; sB�. It is the number of
ways orbital angular momentum l combines with total spin
s to form total angular momentum j. The total spin in turn
comes from the coupling of sA and sB.

For particles with spin, the IE TPS (7) generalizes as

 H �mA;WA; sA� �H �mB;WB; sB� �H P �H int;

(10)

where the internal Hilbert space is

 H int �HW �
M1
j�jmin

H �M;W; j� � Cdj�l;sA;sB�: (11)

The representation on (10) factors U � UP �Uint, where
 

UP�g� e�P� � e�i��1=2�Ma�v�ia�P0�ibE0e�P�� e�P0�;

Uint�g� i�W�
jls
ji
� e�ibW

X
ji

Dj�R�j0iji i�W�
jls
j0i

(12)

and E0e�P� � 1=�2M�P2 � v � P� 1=2Mv2.
Dynamical invariance of IE entanglement.—We can

extend this result to show that the symmetry-invariant
TPS (10) is also dynamically invariant. Partial wave analy-
sis (9) allows the use of Schur’s lemma which asserts that
an operator in the commutant of a representation is pro-
portional to the identity in every UIR (sub)space. For
instance, since the S operator for elastic scattering is
Galilean invariant and unitary, Schur’s lemma implies
that it acts as the unit operator on each H �M;W; j� in
(9) and as a unitary, symmetric matrix, called the reduced
S matrix, in each Cdj�l;sA;sB� [11]. In the case of a central
interaction and spin-orbit coupling, the reduced Smatrix is
just exp�2i��W�l;s��ll0�ss0 , where ��W�l;s are called scat-
tering phase shifts. Clearly, any Galilean invariant Smatrix
factors into local unitaries on the IE TPS (10). Therefore,
IE entanglement in an in-state will be invariant under any
scattering dynamics that respects Galilean symmetry.

While the amount of IE entanglement for this system
under TPS (7) or (10) depends on the shape parameters of
the input states (see below), it will not be changed by any
Galilean invariant dynamics, including all central and non-
central, spherically symmetric interactions. The effect of
such interactions V̂ is to change the internal energy of the
particle system, Ŵ � Ŵ0 � V̂, where the subscript 0 refers
to the free particle system. Since internal energy is an
invariant in the Galilean algebra, it is possible to define
the interacting Hamiltonian Ĥ � Ĥ0 � V̂ by the relation
Ŵ � Ĥ � 1

2M̂
P̂2. This amounts to choosing the momen-

tum, angular momentum, and boost operators for the in-
teracting system to be the same as those for the free system.
If the interaction is spherically symmetric and depends
only on the internal variables, then the interacting gener-
ators will fulfill the Galilean commutation relations, and
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the analysis for the symmetry-invariant TPSs can now be
carried out verbatim for the interacting case. That is,
dynamical invariance is a consequence of symmetry in-
variance. A similar analysis, with some complications,
holds for the Poincaré group. Here, the interactions can
be included into the invariant mass operator. However, due
to the structure of the Poincaré algebra, it is not possible to
simply modify the Hamiltonian alone. Different choices of
operators that include interactions lead to different forms
of dynamics, but the connection between the symmetry
invariance and dynamical invariance holds in each case.

Conclusion.—In scattering, one generally looks at the
interparticle entanglement, TPS (4). However, other no-
tions such as IE entanglement are relevant. For instance, in
classical coupled oscillators the degrees of freedom asso-
ciated with the normal modes are at least as important, both
conceptually and computationally, as those of position and
momentum of each oscillator. Here, we show that IE en-
tanglement in scattering provides a particularly convenient
way of understanding certain features of interparticle en-
tanglement. Generally, there is no interparticle entangle-
ment in the asymptotic in-state, where the interaction
vanishes. The interparticle entanglement in the asymptotic
out-state can be calculated, for example, using the purity or
entropy of the reduced density matrix where the Hilbert
space of one particle has been traced over. As an example,
consider spinless particles with Gaussian momentum wave
functions [12,13]:

 �in�pA;pB� � NAe
��1=2�2

A��pA�pA0�
2
NBe��1=2�2

B��pB�pB0�
2
:

(13)

This in-state has no entanglement under the TPS (4).
However, if we make the variable transformation (6), the
state ~�in�P;q� will have entanglement with respect to the
IE TPS unless the masses and widths satisfy mA

�2
A
� mB

�2
B

.

Generally, scattering dynamics transforms the state (13)
into an out-state with interparticle entanglement. However,
it is shown in [12] that in scattering with a hard-core
potential there is no interparticle entanglement in the out-
state when exactly the same relationship between the
masses and widths is satisfied. Also, it is proved in [13]
that the wave function of a collection of particles with
different masses will converge to one with the same
mass-width relationship after scattering multiple times,
and in this limit, interparticle entanglement tends to zero.
These results may be consequences of the more general
principle of dynamical invariance of IE entanglement.

In summary, there exist TPSs that are symmetry-
invariant, and therefore also dynamically invariant for a
large class of potentials. These TPSs allow for measures of
entanglement that do not depend on the frame of reference.
They further motivate interesting questions about entan-
glement in scattering, such as the explicit change of en-

tanglement as a function of time in the TPS (4) and how
this change depends on the details of the interaction.
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