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Atomic Bose-Einstein condensates are singular forms of matter with the coherence between constituent
atoms as a defining characteristic. Although this viewpoint is increasingly validated through experimental
findings, the mechanisms behind the observed losses are still understood with classical recombinant
collision arguments between particles within the condensate itself. By incorporating a general interparticle
interaction into the Hamiltonian, a coherent decay rate can be obtained, thus providing a direct link
between the observed losses and the microscopic two-body parameters. Appearing in the lifetime, the
interaction strength, �, is expressed as � � 8�a=�1� ��, where the small parameter � is obtained from a
fit to experimental loss data. Most importantly, the lowest order rate exhibits a novel density dependence
(�3=2) that can be identified in low temperature tests.
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As the coldest form of matter known to exist, atomic
Bose-Einstein condensates (BECs) are ideal superfluids in
which the constituent atoms lose their individual identities,
becoming absorbed into a single macroscopic quantum
cloud that inherits its properties directly from the quantum
world. One important quantum property arises from the
microscopic propensity for molecule formation, recog-
nized as the driving force behind the decay of the conden-
sate. Despite the wealth of experiments that accentuate
coherence as a fundamental aspect of the BEC [1], its
decay mechanisms continue to be primarily understood
through semiclassical collision kinetics. At finite tempera-
ture, the presence of quasiparticle excitations would
induce interactions that can manifest in a manner consis-
tent with a classical three-body interaction scheme. In
addition to the presence of these excitations, we find that
the BEC itself has an instability resulting in a decay of its
coherent state. Initially discovered as a property of con-
densates having attractive interparticle interactions [2], this
coherent loss can arise as a general feature of the many-
body physics.

Although molecule formation had been long recognized
as the fundamental reason for atom loss, the exact kinetic
mechanism through which it manifested was at first poorly
understood. To fit the experimental observations of cold
hydrogen samples, a three-body process was eventually
identified as being primarily responsible for the loss [3].
Specifically, a three-body recombinant event occurs when
an atom causes a molecule to relax into a deeply bound
state thereby releasing energy resulting in the expulsion of
both atom and molecule from the trap. Although these
initial gas samples were cold, they were relatively far
from quantum degeneracy which allowed them to be de-
scribed classically. As such, the proposed recombinant
model was completely consistent with the theoretical
framework underpinning the description of these gases.

To understand decay as a coherent mechanism, we first
examine the order parameter,  �r; t�, which is sometimes
identified with the single-particle state into which all par-
ticles coalesce, but is normalized to the total number of
condensate atoms, N0. Denoting � as the phase of the
stationary, single-particle wave function, ’, we have

  �r; t� �
������
N0

p
’�r�e�i�t=@: (1)

When substituted into the many-body Schrödinger equa-
tion, i@@t � Ĥ , the time-independent Gross-Pitaevskii
equation emerges, where � is identified as the chemical
potential in the usual way [4]. Therefore, this definition of
the order parameter indicates that coherent decay arises for
a complex valued chemical potential, with the imaginary
part quantifying the decay rate. Through this argument it is
seen that condensate loss can be incorporated as a funda-
mental aspect of the underlying physics, provided that the
model Hamiltonian contains the necessary flexibility to
yield complex values for � in an equation of state.

Because no such complex solution exists in the mean
field Gross-Pitaevskii treatment, our starting point is a
more general Hamiltonian that is consistent with the low-
energy scattering physics. In most treatments, a delta
function interaction is specified where the strength is in
proportion to the scattering length, V�r� � 8�a��r�.
Although this model has been successful in many applica-
tions, it is inconsistent with the fact that, in the absence of a
molecular state, the scattering length must vanish at zero
range. In addition, it implies that attraction or repulsion is
dictated entirely by the sign of a, thus precluding the
possibility of having an attractive interaction with a posi-
tive scattering length. Hence, we remedy these deficiencies
with the more general separable form given by the two-
body matrix element,

 hkk0jV̂jk00k000i � ���P� P0�f�q�f�q0�: (2)
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Taking all energies on the scale of @2=2m, � is identified
with the strength whereas f is the dimensionless form
factor. In addition, the arguments are simplified with new
momenta defined by q � �k� k0�=2, q0 � �k00 � k000�=2,
P � k� k0, and P0 � k00 � k000. By solving the
Lippmann-Schwinger equation, T � V � VGT, the
strength is related to the scattering length through
�8�a��1 � ��1 � b�1, where the inverse range is given
by b�1 � �4�2��1

R
f�k�2dk.

Since molecule formation is responsible for the decay,
the model must include coupling to the molecular state
which effectively changes the scattering length. This
change is accounted for by a shift in the strength, ��
g2=�, where � is the energy difference between the atoms
and the molecules and g is the coupling strength between
the two components [5]. Using this substitution, the full
scattering length becomes

 

1

8�a
�

1

�� g2=�
�

1

b
: (3)

For positive scattering lengths, the background (g � 0)
strength must be greater than or equal to 8�a, but inclusion
of the bound state allows for an arbitrary value of � since
g2 and � are unknowns.

With the separable form in (2), we consider the zero
temperature thermodynamic potential, E��N, which is
the expectation value of the operator
 

Ĥ ��N̂ �
Z
 ̂y�k��k2 ��� ̂�k�

� ��� 2��
Z
�̂y�k��̂�k�

�
�
2

Z
 ̂y�q�� ̂

y�q��f�q�f�q0� ̂�q0�� ̂�q0��

�
g���
2
p

Z
�̂y�P�f�q� ̂�q�� ̂�q�� � H:c:; (4)

where  ̂ and �̂ are the respective atomic and molecular
field operators coupled through the form factor gf�q�=

���
2
p

[6]. In order of appearance, the terms on the right-hand side
comprise a kinetic part, the molecular contribution, the
atom-atom potential, and the coupling term. Finally, the
last two terms have been simplified using the same varia-
bles in (2), but with q� � q� P=2 and q0� � q0 � P=2.

In a uniform system, the momentum space order pa-
rameters [see Eq. (1)] are simply constants multiplied
by delta functions which appear in the field operators
as  ̂�k� � u�k�â�k� � v�k�ây�k� � 1��

2
p  ��k� and

�̂�k� � 1��
2
p ���k�, where the  ̂ has been separated into a

mean field part, denoted by  ��k�, and a fluctuation de-
fined through the usual canonical Bogoliubov transforma-
tion [7]. Because of the absence of any �̂ �̂ terms in (4),
the variational analysis causes any molecular fluctuations
to vanish, thereby reducing the molecular field to its mean.
To calculate the expectation value of (4), we take a vacuum
state, j0i, such that âj0i � 0, then use Wick’s theorem [8].

Furthermore, a step function form factor, f�k� �
��4�2=b� jkj�, renders all integrals independent, where
the cutoff is 4�2=b. Although this integral decoupling
emerges in the variational treatment, we do not prove it
here due to space constraints. Because of the system’s
uniformity, it is convenient to normalize the thermody-
namic potential by the volume of the space, V , which
obtains the pressure as
 

�P �
1

V
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Arriving at this expression also requires the change of
variables P! �P, such that h ̂y�q�� ̂�q0��i !
h ̂y�q�� ̂�q0��i.

Under the usual constraint u�k�2 � v�k�2 � 1, the pres-
sure is extremized by �P=�v�k� � �P=�� � �P=� �
0. Using the definitions
 

	2 � ��� 2�
Z
v�k�2 � � 2; (6a)


 � �
Z
u�k�v�k� �

1

2
� 2 � g�; (6b)

the variations reduce to the following set of equations
 

v�k�2 �
1

2

�
k2 � 	2���������������������������������

�k2 � 	2�2 � 
2
p � 1

�
; (7a)

u�k�v�k� � �
1

2


���������������������������������
�k2 � 	2�2 � 
2

p ; (7b)

� � �
g

�� 2�

�Z
u�k�v�k� �

1

2
 2

�
; (7c)

� 2 � 
� 	2: (7d)

Comprising a complete set, Eqs. (6) and (7) allow all
quantities to be expressed in terms of a single parameter.
Along with (6a), (7c), and (7d), the integrals of v�k�2 and
u�k�v�k� are substituted into (6b), resulting in an expres-
sion relating 
 to 	2. Further progress is achieved by
defining the parameter � through � � 8�a=�1� ��, which
is substituted into (3) to give

 � �
�8�a� b�g2 � �8�a�2�

�8�a� b�g2 � 8�ab�
: (8)

Assuming this to be a small quantity allows corresponding
expansions to be made. Confirming the validity of this
assumption, � is determined from a fit of the coherent
decay rate to the observed loss data [9].

Before a low-density expansion of � can be made, it is
first necessary to determine the magnitude of j
j=j	2j,
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consistent with j�j � 1. Ignoring the quantum fluctuation
terms will give the lowest order results which, by Eqs. (6a)
and (7d), imply 
	�. Because �	 8�a, we have
� 2 	 16�a�	�� 	2, from Eq. (7d). Finally, the usual
low-density chemical potential, �	 8�a�, gives 
	 	2.

With this approximation, the density � �  2=2�R
v�k�2 ��2, has the small range (b	� 1) expansion

given by [10]
 

� �
1

��1� ��
	2 �

���
2
p

12�2

1

�1� ��5=2




�
4� 5��

15

8
�2 ln��� � . . .

�
	3 � . . . : (9)

Realized in terms of the small quantity �, the expression in
square braces is an expansion for 
	 	2 [10]. Inversion of
the density equation results in an expression of 	 in powers
of

����
�
p

which, when used in (6a), obtains a chemical
potential of the form

 � � 8�a���1�3=2 ��2�2 � . . . : (10)

To linear order in density, � has the expected dependence,
but the coefficients �1 and �2 are in general complex.
Note that the expansion (10) includes a �2 term which can
be interpreted as a three-body effect, perhaps becoming
dominant at higher temperature [11]. However, at low
density the �3=2 term dominates, having a coefficient de-
pendent only on the scattering length and the two-body
interaction strength, � [12].

Since � is also the phase of the order parameter, the
imaginary part of �1 determines the dominant, lowest
order coherent decay rate coefficient as

 �0 �
@

m
5
���
2
p

32�
��2 � � � ���5=2: (11)

Obtaining a nonzero rate requires � & 8�a which, as
demonstrated by (3), is a condition made possible only
by inclusion of a molecular state. In addition, we see that a
sufficiently small range (b� a) implies the two-body
relationship g2=�	 8�a, which can be used as a test for
the applicability of this description. Given that � is pro-
portional to the scattering length, the rate coefficient is
roughly seen to have an a5=2 dependence that is reminis-
cent of the earlier result [2].

Although we have shown that a complex chemical po-
tential can arise in a realistic Hamiltonian, the predicted
density dependence must be consistent with experimental
findings. Extension of the uniform medium result to the
experiments’ trapping geometries requires the application
of the local density approximation, where it is assumed that
each point inside the trap admits a locally uniform value
for �. Proceeding in the same manner as the treatment of
the three-body collisional loss [13], the coherent rate is
described by ��0

R
��r�5=2d3r � ��0h�

3=2iN, with N
being the total number of atoms in the trap. Note that the
averaging is weighted by density which, in the Thomas-

Fermi limit, assumes a parabolic profile, ��r� �
�m2 �!2=�8�@2a��r2

0 � r
2�, where �! � �!x!y!z�

1=3, and
r0 is the BEC radius found from normalization to N. With
this profile, the integral is calculated to be h�3=2i �

c5=2N3=5, where c5=2 � �75�=4096��7c2�
3=2 and c2 �

�152=5=�14���m �!=�@
���
a
p
�6=5. Inside the chamber, back-

ground atoms will impinge on the BEC resulting in quasi-
particle excitations which manifest as the loss of individual
particles from the collective. Taking �0 as the lifetime from
this background effect, the averaged coherent rate equation
is given by

 

1

N

dN
dt
� ��0c5=2N

3=5 �
1

�0
: (12)

To test its consistency with experiment, we choose an
appropriate value of � to fit the time evolution of N
[Eq. (12)] to the loss data [14]. Demonstrated in the inset
of Fig. 1, these data provide no appreciable distinction
between the loss as a coherent phenomenon and a purely
three-body effect. Because of a lack of detailed loss mea-
surements, the value of � in other atomic species must be
found by a coarse one-point lifetime observation. A sum-
mary of some different cases is displayed in Table I.

The imaginary part of � gives a decay rate consistent
with experiment, but it does not indicate how atom loss
occurs. Addressing this first requires recognition of a lower
energy solution corresponding to the two-body bound state
[9]. A small oscillation expansion reveals that the present
solution lies inside a continuum of excitations of that lower
state. Hence, the decay represents a transition into collec-
tive modes which can induce quasiparticle ejection from
the condensate [20].
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FIG. 1. Fit of the decay rate given in Eq. (12) to the experi-
mental loss data of 87Rb [13] with an inset showing a close-up
view comparing the difference between the coherent decay and
the semiclassical three-body recombinant model. In a least
squares sense, the best fit is obtained for a decay rate coefficient
of �0 � 2:7732
 10�22 cm9=2 s�1 which, by Eq. (11), corre-
sponds to an interaction strength � � �0:974�8�a. Also, the
background lifetime is found to be �0 � 38:8 s, implying it is
not the dominant effect.
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In conclusion, the chemical potential’s imaginary part
quantifies the coherent decay rate through the phase of the
condensate wave function. In a variational analysis of a
general Hamiltonian, a complex valued chemical potential
arises for suitable parameter values. From this perspective,
observed condensate losses can be regarded as a signature
of the two-body interaction present in the model Hamil-
tonian. In particular, this result establishes the two-body
condition g2=�	 8�a, which can be checked by molecu-
lar theorists. Most importantly, the decoherence mecha-
nism has a lowest order �3=2 dependence that may be
distinguished by experiments at lower densities.
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