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Cold atoms in periodic potentials are versatile quantum systems for implementing simple models
prevalent in condensed matter theory. Here we realize the 2D Bose-Hubbard model by loading a Bose-
Einstein condensate into an optical lattice, and study the resulting Mott insulator. The measured
momentum distributions agree quantitatively with theory (no adjustable parameters). In these systems,
the Mott insulator forms in a spatially discrete shell structure which we probe by focusing on correlations
in atom shot noise. These correlations show a marked dependence on the lattice depth, consistent with the
changing size of the insulating shell expected from simple arguments.
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In recent years, ultracold atoms confined in optical
lattices have realized strongly interacting condensed mat-
ter phenomena, including the Girardeau-Tonks gas in 1D
[1,2] and the superfluid to Mott-insulator transition in 3D,
and 1D [3,4]. While the existence of a 2D Mott insulator
has been verified in the cold atom system [5], it has gone
largely unexplored. 2D interacting Bose systems represent
an interesting middle ground between 1D and 3D; quantum
fluctuations are essential, as in 1D, destroying Bose con-
densation, but 2D systems still exhibit superfluity, as in 3D
[6,7]. The atom-optical system differs substantially from
traditional condensed matter systems both in control (the
trapping potentials can be changed dynamically on all
relevant experimental time scales) and in measurement
opportunities (e.g., imaging after time of flight provides a
direct measurement of the momentum distribution). These
techniques allow us to study the 2D Mott-insulator via its
momentum distribution and correlations in its noise [8–
11]. We present momentum distributions which quantita-
tively agree with the predictions of a 2D theory with no
adjustable parameters (even approaching the insulator-
superfluid transition, where perturbation theory breaks
down). In the cold atom system, the transition from super-
fluid to insulator occurs smoothly; the system segregates
into shell-like domain(s) of insulator and superfluid [12–
15]. We detect signatures of an insulating shell via corre-
lations in atom shot noise; in our data these correlations
behave as expected due to the changing size of the Mott-
insulator region.

We realize an ensemble of 2D Bose systems in a com-
bined sinusoidal plus harmonic potential. Absent the har-
monic confinement, the system is well described by the
Bose-Hubbard (B-H) Hamiltonian [12,16], with a matrix
element for tunneling between sites t and an on-site energy
cost for double occupancy U. The ground state is either a
superfluid (SF) or a Mott insulator (MI). For unit filling (on
average one atom per lattice site), the 2D B-H system
exhibits a zero temperature quantum phase transition
from SF to MI [16] when the ratio t=U � 0:06 [17,18],
which we denote by �t=U�c. When t=U � 0, the unit filled

MI has exactly one atom per lattice site. At finite t=U
variations from unit occupation are correlated between
nearby sites, giving a momentum distribution with broad,
diffractive, structure [19].

Harmonic confinement modifies the physics from the
homogenous case. This can be modeled in terms of a
‘‘local chemical potential’’ varying from a peak value in
the center of the trap to zero at the edges (a local density
approximation, LDA). As t=U decreases, domains of MI
separated by SF grow continuously, forming a discrete
shell structure [12–15]. In our experiment, we expect
shells of SF and unit-occupancy MI.

We prepare a B-H at a specific value of t=U (calculated
from the 2D band structure), measure the momentum
distribution, and extract correlations in its noise. The loss
of diffraction in the momentum distribution [3] as the
system progresses through the Mott regime is shown in
Fig. . Because of the MI shell structure, it can be difficult to
deconvolve the separate contributions to the data, particu-
larly near �t=U�c. However, we find that a theory for the
homogeneous system is surprisingly good at describing the
momentum distribution.

Figure 1(b) shows momentum noise correlations, where
diffractive structure persists deep into the Mott regime
[8,9]. In this limit, the width of the correlation peaks should
be diffraction limited by the inverse linear size of the Mott
domain, and the integrated signal of the correlation peaks
should depend on the number of occupied lattice sites in
the MI. Indeed, we observe the ‘‘area’’ A of the correlation
peaks increases with increasing t=U.

We produce nearly pure 3D 87Rb BECs with NT �
1:7�5� � 105 [20] atoms in the jF � 1; mF � �1i state
[21]. The BEC is separated in 200 ms into an array of
about 60 2D systems by an optical lattice aligned along ẑ
(vertical lattice). This lattice is formed by a pair of linearly
polarized � � 820 nm laser beams [22]. A square lattice in
the x̂-ŷ plane is produced by a beam in a folded-
retroreflected configuration linearly polarized in the x̂-ŷ
plane [23]. This x̂-ŷ lattice is applied in 100 ms [24]. The
intensities of the vertical and x-y lattices start at zero,
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follow exponentially increasing ramps (with 50 and 25 ms
time constants, respectively), and reach their peak values
simultaneously. These time scales are chosen to be adia-
batic with respect to mean-field interactions, vibrational
excitations, and tunneling within each 2D system [25]. The
final depth of the x̂-ŷ lattice determines t=U and ranges
from V � 0 to 31�2�ER, and the final vertical lattice depth
is 30�2�ER (where ER � @

2k2
R=2m � h� 3:4 kHz and

kR � 2�=�). We measure lattice depths by pulsing the
lattice for 3 �s and observing the resulting atom diffrac-
tion [26].

As prepared, the system is a stack of 2D Bose gases each
in a square lattice of depth V and at a typical density of 1
atom per site. The atoms are held for 30 ms; then all
confining potentials are abruptly removed (the lattice and
magnetic potentials turn off in &1 �s and ’300 �s, re-
spectively). This projects the initial states onto free particle
states which expand for 20 to 30 ms, and are then detected
by resonant absorption imaging [27]. Because initial mo-
mentum maps into final position, an image measures the
2D momentum distribution n�kx; ky�, which we average
over many realizations.

Figure 1(a) shows a series of such averages, starting near
the SF-MI transition and crossing deep into the MI phase
[3]. These data smoothly progress from sharp diffraction
peaks on a small background (top), and culminates with a

nearly-perfect Gaussian (bottom). Because of shell struc-
ture, the diffraction images can be difficult to interpret,
returning to simplicity in the limits of shallow or deep
lattices where the system consists of just SF or MI.

When t=U � 0, the MI has an exact number of atoms in
each occupied site, in our case n � 1. For small t=U, the
unit-occupied state is modified to first order in perturbation
theory with a small mixture of neighboring particle-hole
pairs. This gives a modulated momentum distribution:
hn̂ki � Njw�k�j2f1 � ��cos��kx=kR� � cos��ky=kR�	g
[19]. Here � � 8t=U, and w�k� is the Fourier transform of
the Wannier states in the lattice sites; w�k� is well approxi-
mated by a Gaussian for the data described here. [As the
density modulations result from an interference between
the unit-occupied Mott state and the particle-hole admix-
ture, the lowest order correction is hn̂ki / t=U, while the
probability for double occupancy scales as �t=U�2.] In 3D,
the first order dependence � / t=U was verified over a
range of parameters [19]. Agreement near the MI-SF tran-
sition can be surprising for two reasons: (1) only a fraction
of the inhomogeneous system may be in the MI phase;
(2) as t=U increases, higher order contributions become
important.

To quantify these terms, we expand an analytic result
[28] to order �t=U�2, correcting the momentum distribution
by 72�t=U�2�cos��kx=kR� � cos��ky=kR�	2. This yields
Fourier terms �1�cos�2�kx=kR� � cos�2�ky=kR�	, and
�2 cos��kx=kR� cos��ky=kR�; we define the average coef-
ficient � � ��1 � �2�=2 � 90�t=U�2. (Terms higher order
in t=U also contribute slightly to �1 and �2.)

Measured coefficients � and � (from Fourier trans-
formed quasimomentum distributions, computed as de-
scribed below) are plotted in Fig. 2. The dashed lines are
the predictions: � � 8t=U and � � 90�t=U�2 (no adjust-

 

FIG. 2 (color online). Solid symbols: measured first order
coefficient � versus t=U. The overlayed red (or gray) dashed
line shows the prediction, � � 8t=U. (These data and the fit have
been displaced for clarity: vertically as indicated, and by about
2% horizontally.) Empty symbols: averaged second order coef-
ficient � versus t=U. The associated red (or gray) dashed line is
the prediction, � � 90�t=U�2. The vertical dotted line indicates
the expected location of the 2D SF-MI transition [17,18].

 

FIG. 1. Results at three values of t=U: 40� 10�3, 4� 10�3,
and 0:5� 10�3. (a) Atom density versus momentum. (b) Noise
correlations versus momentum difference. Each displayed image
was averaged from �60 raw images; to reduce technical noise,
the displayed correlation data was averaged with itself, rotated
by 90
.
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able parameters). The vertical black line denotes �t=U�c �
0:06, where we expect the MI to first nucleate in our
sample. Points to the left of the black dotted line (MI
regime) agree with expectations. Near the MI transition
the first and second order terms become comparable, in-
dicating the incipient breakdown of perturbation theory.

In Fig. 3 we compare the measured quasimomentum
distribution with theory (solid lines). The momentum dis-
tribution is the product of the magnitude squared Wannier
function j!�k�j2 and hn̂qi (periodic along x̂ and ŷ in the
reciprocal lattice vectors, 2kR). To extract the normalized
quasimomentum distribution we divide the data by j!�k�j2,
then normalize a properly weighted average of all points
separated by multiples of reciprocal lattice vectors. At
small t=U, the quasimomentum distribution is cosinusoi-
dal. As t=U increases toward �t=U�c, contributions of
higher Fourier terms become important, as is evident in
the cross section at t=U � 25� 10�3 and the coefficients
of Fig. 2. The shape of the measured distribution matches
the predictions of theory with no free parameters.

A homogeneous-system theory provides a remarkably
good representation of the data discussed above. This
results from two facts: except quite close to the MI tran-
sition, nearly all of the system should be unit-occupied MI;
and by focusing only on the largest momentum scales
(corresponding to spatial length scales on the order of 1
or two lattice sites) we are insensitive to the size of the MI.
However, the size of the MI almost exclusively determines
the area and width of the peaks in the noise-correlations
signal [Fig. 1(b)] [8,9,29].

We determine noise correlations from our images of
atom density n�kx; ky� by computing the autocorrelation
function (ACF) averaged over many images: S��kx;�ky��
h
R
n�kx;ky�n�kx��kx;ky��ky�dkxdkyi. To compare with

theory, we normalize by the ACF of the average,

S0��kx;�ky� �
R
hn�kx; ky�ihn�kx� �kx; ky��ky�idkxdky;

i.e., we determine S��kx; �ky� by calculating the ACF of
each image separately, and then average over many real-
izations, typically (40 to 80). [Normalizing by the S0

removes the dependence of S��kx; �ky� on the momentum
distribution hn�kx; ky�i.] Deep in the MI phase, S��kx; �ky�
has diffractive structure, with noise correlation peaks sepa-
rated by 2kR, revealing the underlying lattice structure.

In the limit of a deep lattice, the ground state of our
system is a 3D array of lattice sites with exactly one atom
per site. As is usual for diffraction phenomena, � is deter-
mined by the size of the array, and is proportional to L�1,
where L / N1=3 is the linear extent of the MI region and N
is the number of sources (lattice sites). Likewise, A is
related to the atom number in the MI by A � �2kR�

2=N
[9]. As with most noise, the noise-correlation variance
scales as N. We normalize by a quantity which scales
like 1=N2, so the relative fluctuations described by A
have an overall 1=N dependence. We calculate that this
remains true including order t=U corrections to the MI
state. [Order �t=U�2 terms, which we have not investigated,
may alter this behavior.]

As the system approaches �t=U�c from below, we expect
the size of the MI region to shrink, and correspondingly for
� and A to increase (the total number of atoms in the
experiment NT remains fixed; only the number of atoms
in the MI N decreases). Figure 4 shows this general be-
havior. Our study of the noise correlations near the MI
critical point is enabled by a masking procedure: in each
image we eliminate regions of radius 35 �m � 0:3� kR
centered on the diffraction peaks before computing corre-

 

FIG. 3 (color online). Cross sections of normalized quasimo-
mentum distributions (along x̂� ŷ, and offset for clarity) at three
values of t=U. The data are plotted along with the theoretical
profile (solid lines) [28]. The dashed lines (not visible in the
bottom trace) reflect the uncertainty in the theory resulting from
the single-shot �0:5ER uncertainty in the lattice depth.

 

FIG. 4 (color online). Average area of the noise-correlation
peaks expressed in units of k2

R=NT . The dashed line, denoting A
as calculated in our LDA model, was scaled by 0.45 to lie upon
the data (see text). Inset: the solid symbols indicate the measured
peak width, �, in units of kR. The dashed line is the expected
width from our LDA computation. The solid line shows the
modeled � including the imaging resolution [27] of 0:05kR. In
both cases, the vertical dotted line shows the expected location of
the 2D SF-MI transition [17,18], and the uncertainties reflect the
statistical uncertainty of the fit due to background noise.
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lation functions. This removes spurious effects of the sharp
diffraction peaks at larger t=U; tests found no systematic
errors associated with our masking procedure [27].
(Fölling et al. used a similar technique, but only deep in
the MI phase, to show that the correlation peaks do not
result from spurious effects of remnant diffraction [9].)

Figure 4 shows A measured by fitting the peaks to 2D
Gaussians. A increases with t=U, indicating that the frac-
tion of the system in the MI state is decreasing as expected.
A is expected to be �2kR�2=NT for small t=U; however, our
data tend to about 45% of this (a similar suppression of the
noise signal was observed in Ref. [9]). We attribute at least
some of this discrepancy to collisions during the ballistic
expansion of the system, which modify some atoms’ tra-
jectories, removing those atoms from the correlation fea-
tures; errors in number calibration could also contribute.

The data are plotted along with a dashed line showing
the expected area due to the finite size of the Mott domain,
which we calculated in a LDA using a 2D MI phase
diagram [17]. After scaling the model by a factor of 0.45,
it agrees to within our uncertainties.

The width � is shown as an inset to Fig. 4; the symbols
are the measured RMS peak widths from a Gaussian fit,
and the dashed line is the expected peak width for a pure
MI with size given by our LDA model. At small t=U, the
data saturate to about 0:045kR, compared with the 0:015kR
expected in our model. This saturation is due to at least two
effects: (1) the finite resolution of our optical system [27],
and (2) the �15 �m initial radius of the sample. We
estimate that each of these effects would separately limit
the measured peak width to about 0.03 and 0:04kR, respec-
tively. (The width may also be influenced by mean field
during expansion.) The black dashed line shows the mod-
eled � added in quadrature with the terms described above.

In our simple calculation (valid to first order in t=U), A
and � depend only on the size of the Mott domain. More
sophisticated theoretical techniques can be applied to this
problem, indeed explicit numerical calculations for a har-
monically confined 1D and 2D systems exist [29,30].
These results agree qualitatively with our data, and further
measurements near the MI transition could quantitatively
test these calculations.

In this Letter we demonstrate a remarkable agreement
between experiment and theory describing the momentum
distribution of a 2D MI over a wide range of conditions,
and to second order in perturbation theory. Additionally,
we see that correlations in the atom shot noise yield
information about the fraction of the system in the MI.
Even when the momentum distribution is featureless, the
noise correlations show the lattice structure and indicate
system size. This adds support to proposals to identify the
phases of extended B-H models (including a possible
supersolid phase), using a combination of momentum
and noise-correlation measurements [30].
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