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We show that a molecular Bose-Einstein condensate in a trap is stabilized against stimulated
dissociation if the trap size is smaller than the resonance healing length �@2=2mg

���
n
p
�1=2. The condensate

shape determines the critical atom-molecule coupling frequency. We discuss an experiment for triggering
dissociation by a sudden change of coupling or trap parameters. This effect demonstrates one of the
unique collective features of ‘‘superchemistry’’ in that the yield of a chemical reaction depends critically
on the size and shape of the reaction vessel.
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Atom-molecule conversion in quantum Bose gases is
equivalent to three-wave mixing in nonlinear optics [1–
6]. Dissociation of a molecular condensate, corresponding
to parametric down-conversion, exhibits a modulational
instability, resulting from exponential amplification of
spontaneously emitted photon-pairs [7]. The existence of
similar parametric gain in molecular dissociation was
noted early on in the study of atom-molecule condensates
[3,4,8,9]. This dynamical instability generates significant
deviations from the Gross-Pitaevskii (GP) classical field
theory [4,10]. The rapid growth of correlations can be used
for the generation of pair-correlated or number-squeezed
atomic beams [11] in analogy to the use of parametric
down-conversion to generate squeezed light [12].

Exponential gain in molecular Bose-Einstein condensate
(BEC) dissociation is readily captured within an unde-
pleted pump approximation [4,9,11]. The atom-molecule
Hamiltonian is
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where  ̂ and �̂ are atomic and molecular Bose field
operators, m is the atomic mass, � is the detuning from
atom-molecule resonance, and V�r� � m!2

0r
2=2 is an iso-

tropic optical trap potential with frequency !0. Atoms and
molecules see essentially the same trap frequency since
molecules have twice the mass and twice the optical polar-
izability [13]. Atom-molecule coupling of strength g, is
achieved by a Feshbach resonance [14] or by an optical
stimulated Raman transition [15]. The molecule-molecule
interaction strength is Um and interactions between atoms
are neglected since we are interested in the initial disso-
ciation dynamics when atomic densities are small. The
Heisenberg equations of motion for the field operators read
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The undepleted pump approximation is a linearization of
Eq. (2) about a stationary, classical molecular field ��r�
obeying the GP equation � @

2

4mr
2�� �2V�r� �

Umj�j2�� � ��. Replacing �̂�r; t� ! ��r�e�i�t=@, and
rotating �̂ �  ̂ei�t=2@, �̂y �  ̂ye�i�t=2@ (so that the
atomic density remains na � h ̂

y ̂i � h�̂y�̂i), we obtain
the coupled linear equations for the atomic field operators
�̂ and �̂y,
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where � � ���=2 is an effective detuning including the
molecular chemical potential consisting of zero-point en-
ergy and of a molecular interaction shift. The molecular
condensate stability is determined by the eigenvalues � of
the set (4) and (5). For a uniform gas with V�r� � 0, � ����
n
p

, and � � Umn (n being the molecular density), the
system is diagonalized in momentum space  ̂�r; t� �P

qâq�t� exp�iq 	 r�, to give the dispersion,
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��q � ��
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q

; (6)

where �q � �@q�2=2m is the free-particle dispersion. Thus
for a uniform gas with � <

���
n
p
jgj, there are unstable

resonant modes for which �q � � < g
���
n
p

, resulting in
complex characteristic frequencies and exponential gain.
The dynamics of amplified modes is described by well-
known solutions, given in terms of the hyperbolic func-
tions cosh��qt� and sinh��qt�, which can be found in
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Refs. [4,11,12]. For � � 0, the unstable modes are simply
low-energy, long-wavelength excitations.

To gain insight on nonuniform molecular BEC stability,
we compare Eqs. (4) and (5) to the standard Bogoliubov
analysis [16] of an attractively interacting BEC, with the

uniform-gas dispersion �q �
�����������������������������
�q��q � 2nU�

q
, where U is

the interaction strength. The difference between the
Bogoliubov dispersion relation and Eq. (6) results from
the existence of additional mean-field diagonal terms in the
Bogoliubov equations, corresponding to different pairings
of the U ̂y ̂  ̂ interaction term. For attractive interaction
U < 0, the long-wavelength modes with �q < j2nUj are
unstable, leading to BEC collapse [17]. For a BEC con-
fined to a trap, however, collapse is prevented provided the
size of the trap is short with respect to the healing length
� �

������������������������
@

2=�2mnU�
p

. Since the unstable modes are those
excitations with wavelength longer than �, they are pre-
cluded from tighter traps. Therefore, stable condensates of
attractively interacting atoms exist up to a critical density
for a given trap-frequency [18].

A similar instability threshold exists for molecular BEC
dissociation. Even for � � 0, there will be no unstable
modes towards dissociation provided that the trap size l0 ��������������������
@=�m!0�

p
is smaller than the ‘‘resonance healing length’’
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, which is the characteristic length scale
of Eqs. (4) and (5), resulting from balancing kinetic and
resonance energies. Thus for sufficiently tight confine-

ment, atomic zero-point motion inhibits dissociation.
Remarkably, the outcome of a coherent chemical process
depends due to its collective nature, not only on the statis-
tics of the constituent atoms, but also on the size and
geometry of the ‘‘container’’ in which it is carried out.

To ascertain that confinement can stabilize a molecular
BEC against stimulated dissociation, we have calculated
the characteristic frequencies of Eqs. (4) and (5) with the
finite-size undepleted pump �, by expanding ��r� �P
j’j�j�r�, �̂�r; t� �

P
jâj�t��j�r� in the basis of

harmonic-oscillator solutions �j�r�, and diagonalizing the
resulting linear set of equations for the dynamics of âj�t�
and âyj �t�. The results were compared to a discrete Fourier
transform diagonalization, giving precisely the same ei-
genfrequencies. Eigenvalues of a one-dimensional calcu-
lation with � � Um � 0 are plotted in Fig. 1 as a function
of the atom-molecule conversion frequency g

���
n
p
=@.

Complex frequencies, corresponding to an initially expo-
nential molecular gain, are only obtained if the coupling
frequency is larger than the trap frequency. Thus, for
g

���
n
p
=@!0 <	 where 	 is a geometrical factor of order

1, the molecular condensate is stabilized by atomic zero-
point motion.

In Fig. 2 we plot the results of an approximate solution
of the dynamical Eqs. (2) and (3), including pump deple-
tion. The equations were solved in a mean-field approach,
simulating initial spontaneous dissociation by a complex
Gaussian white noise with zero mean, corresponding to
atomic quantum fluctuations in the Wigner representation
[19,20]. While this approach does not fully capture the
quantum dynamics in the way full stochastic calculations
do [11], it suffices to depict the dominant quantum effect of
amplification of spontaneously emitted atom pairs in the
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FIG. 1 (color online). Real and imaginary parts of character-
istic dissociation frequencies as a function of atom-molecule
coupling strength, for a harmonic trap with frequency !0. The
coupling is assumed to be resonant, i.e., � � 0, and the molecu-
lar condensate is noninteracting, i.e., Um � 0. Complex frequen-
cies only appear when the coupling strength g

���
n
p

is larger than
the trap level spacing @!0.
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FIG. 2 (color online). Total atomic fraction obtained from a
mean-field calculation, triggered by Gaussian noise, as a func-
tion of rescaled time 
 � !0t for g

���
n
p
� 0:9@!0 (dashed red

line) and for g
���
n
p
� @!0t (solid blue line), with � � Um � 0.

The corresponding atomic density profiles at the final time 
 �
30 are shown in the inset.
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vicinity of the instability [4,9]. Since we are interested here
in the mere presence of an instability, our calculation
should indicate whether molecular gain exists even if it
does fail to give the precise onset time. Evidently, Fig. 2
demonstrates the existence of an amplification threshold
gc 
 0:91@!=

���
n
p

. For g < gc all frequencies are real and
there is no observed dynamical gain, whereas for g just
above the critical value, molecular amplification takes
place.

The precise critical ratio between coupling strength and
trap frequency depends upon the shape of the molecular
condensate. In Fig. 3 we plot the numerically obtained
value of 	 as a function of the molecule-molecule interac-
tion strength nUm, in a one-dimensional calculation. The
condensate profile becomes broader with increasing repul-
sive interaction (see inset), leading to higher values of gc
for a given !0 and n. Since the calculation is in 1D, stable
molecular condensates with self-trapped solitary profiles,
significantly narrower than the trap size, do exist also for
attractive interaction. The lowest value of 	 is obtained at
the transition to self-trapping at nUm 
 �@!0.

The coupling energy scales as g
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n
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� g�N=�dl
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where d is the number of dimensions and �d is a
d-dependent geometrical factor. Since the spacing between
trap levels is @!0 � @

2=ml20, we obtain that at the critical
point
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dimensional system d � 3, �3 
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trap size, the critical number of particles in the molecular
condensates is NC 
 �3�

@
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mg�
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should be compared with the critical number of particles
for the collapse of a 3D BEC with attractive interaction of
strength U � 4�@2as=m < 0 (as being the atomic s-wave

scattering length), obtained from balancing 2Un �
2UN=��3l

3
0� with @!0 � @

2=ml20, to give NC 

�3@

2l0=�2mjUj� � �
���
2
p
=3�l0=as. Thus, in contrast to the

critical number of particles for collapse, larger molecular
condensates will be stabilized against stimulated dissocia-
tion for tighter traps, because the increase in zero-point
motion overcomes the effect of increasing density.

Most atom-molecule systems coupled by a magnetically
tunable Feshbach resonance, are well within the strong-
coupling, nonlinear domain, where the characteristic atom-
molecule conversion frequency is much larger than the trap
frequency. For example for the 23Na Feshbach resonance at
907 G [21,22], the coupling strength is given by g �

����������
�Ua
p

[23,24] with Ua � 4�@2as=m, �=�2�@� 
 4:6 MHz,
and as 
 60 bohr. These values give g=2�@ 
 9�
10�3 Hz cm3=2. Given a density of n � 1015 cm�3, we
have g

���
n
p
=2�@ 
 284 kHz, far above contemporary trap

frequencies (we note that comparison of this Feshbach
frequency to the atomic interaction frequency Uan=2�@ 

17:5 kHz, justifies the neglect of atom-atom interactions in
our calculations, even for substantial atomic populations
and high densities. For n � 1013 cm�3, g

���
n
p
=2�@ drops to

28.4 kHz, whereas Uan=2�@ is only 175 Hz). For
!0=2� � 200 Hz we obtain that Nc 
 2� 10�2, so that
stimulated dissociation will be observed for any number of
molecules in the condensate. It may be that a sufficiently
weak Feshbach resonance can be found among the many
resonances of 87Rb [25].

An experimental demonstration of collective dissocia-
tion thresholds can, however, be facilitated in setups where
atoms and molecules are optically coupled via a stimulated
Raman transition [26–31]. In this case, g � �p�s=2�2p

is an effective two-photon Rabi frequency. The one-photon
Rabi frequencies �s;p for the pump (inducing a bound-
bound transition to an intermediate molecular state) and
the Stokes (dissociating the intermediate state via a bound-
free transition) lasers, respectively, are products of laser
intensities by overlap integrals consisting of electronic
transition dipole moments and Franck-Condon factors,
and �2p is the two-photon detuning from the intermediate
bound state. Thus, the effective coupling strength can be
controlled with great precision [28] through the adjustment
of laser parameters. Most appealing are systems of mole-
cules in optical lattices [27,28,30,31], providing optical
coupling to deeply bound internal molecular states, as
well as tight trap frequencies of !0=2� � 10–100 kHz.
Currently, these experiments seek to avoid collective ef-
fects in association by operating in the Mott-insulator
regime with unit occupation numbers. However, provided
that molecular condensates containing roughly 102–103

particles per site be formed, their dissociation can demon-
strate the expected amplification threshold.

Given 103 87Rb2 molecules in a 1 kHz trap, the critical
value gc � @

2=�m
����������������
Nl0=�3

p
� of the interaction strength

turns out to be approximately 2�@� 2:2�
10�5 Hz cm3=2. The corresponding average atomic density
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FIG. 3 (color online). Critical coupling strength
���
n
p
gc as a

function of the molecule-molecule interaction frequency nUm.
Magnetic or optical atom-molecule detunings � were assumed
to compensate the molecular chemical potential, so that � � 0
for each interaction frequency. In this way, true shape effects are
distinguished from mean-field shifts originating from the varia-
tion in the molecular chemical potential �.
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is of order 1013–1014 cm�3 and as 
 100 bohr for 87Rb.
Therefore, Un 
 75–750 Hz for a fully dissociated gas,
and atomic interactions are initially negligible with respect
to the trap and coupling frequencies. The proposed experi-
ment will involve the preparation of a molecular BEC in a
trap smaller than the resonance healing length, thus arrest-
ing dissociation even in the presence of coupling. A sudden
change either in g or in !0 (which in a lattice can be
achieved via switching the lattice wavelength or depth)
will trigger the stimulated dissociation of the BEC. Both
scenarios are depicted in Fig. 4 for a 1D calculation. In
Figs. 4(a) and 4(b), atomic and molecular densities are
shown as a function of time for a g-switch experiment.
Evidently, dissociation is triggered by the change in the
coupling frequency. Similarly, a sudden reduction in trap
frequency [Figs. 4(c) and 4(d)] can lead to stimulated
dissociation of the breathing molecular condensate.
When the simulation is carried over the same time scale
without changing g or !0, no dissociation is observed.

In conclusion, progress in tight confinement of molecu-
lar quantum gases and control over atom-molecule cou-
pling, brings trap frequencies to the vicinity of atom-
molecule conversion frequencies. Molecular BECs can
be stabilized against Bose-stimulated dissociation, if con-
fined to a trap smaller than the resonance healing length � .
Critical values depend on condensate shape and trap ge-
ometry. Future work will explore pattern formation in 2D
and 3D tight-trapping experiments.
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FIG. 4 (color online). Dynamics of dissociation following a
sudden switch in g from 0:9@!0=

���
n
p

to @!0=
���
n
p

(a),(b) or in !0

from 1:1g
���
n
p
=@ to g

���
n
p
=@ (c),(d). Dashed lines mark the time of

the switch at !0t � 4�. Atomic density distributions are shown
in (a) and (c) using a logarithmic color map, whereas the
molecular condensate density is plotted in (b) and (d) on a linear
color map. Molecular interaction and effective detuning are
Um � � � 0.
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