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We present a generalized equations-of-motion method that efficiently calculates energy spectra and
matrix elements for algebraic models. The method is applied to a five-dimensional quartic oscillator that
exhibits a quantum phase transition between vibrational and rotational phases. For certain parameters,
10� 10 matrices give better results than obtained by diagonalizing 1000� 1000 matrices.
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Equations-of-motion methods [1– 4] offer an alternative
to diagonalization of a Hamiltonian to determine the prop-
erties of a quantal system. We consider systems with
Hamiltonians expressed in terms of a Lie algebra of ob-
servables, g, e.g., a set of one-body operators. For a finite-
dimensional irreducible representation (finite irrep) of g,
both approaches give the same results. However, they are
inequivalent when approximations are necessary. For ex-
ample, diagonalizing the Hamiltonian for a system of n
coupled harmonic oscillators, in a basis of uncoupled
harmonic-oscillator states, gives results that only become
precise (to within computational errors) in an infinite limit
whereas an equations-of-motion approach, as given by the
standard random phase approximation (RPA), is already
precise in a 2n-dimensional space. Thus, the RPA provides
the standard means of deriving the elementary excitations
of many-body systems.

Unfortunately, the RPA breaks down when vibrational
shape fluctuations and/or pairing correlations are large.
Thus, we seek equations of motion that avoid this limita-
tion and, ideally, determine the low-energy eigenstates of a
Hamiltonian even when their expansions in natural bases
are too slowly convergent for standard approaches to be
useful. For example, the low-energy states of strongly
deformed rotational nuclei are dominated by components
from higher shells in contrast to the low-energy states of
near-spherical nuclei which may be dominated by the
valence-shell states of a spherical harmonic-oscillator
shell-model basis [5]. In such a situation, diagonalization
of the Hamiltonian in a spherical shell-model basis is
unlikely to give reliable results.

The proposed approach avoids the preliminary stage of
defining basis states and proceeds directly to the determi-
nation of a matrix representation of the algebra of observ-
ables in which the Hamiltonian is diagonal. The approach
has its origins in three previous developments: a variational
technique [6,7] for computing the irreps of potentially
difficult Lie algebras, the double-commutator equations-
of-motion formalism [4], and the equations-of-motion
method of Kerman and Klein [3,8]. Thus, we refer to it
as the RRKK equations-of-motion method.

Consider a Hamiltonian Ĥ that is a polynomial in the
elements fX̂�g of a Lie algebra g of observables with

commutation relations �X̂�; X̂�� �
P
�C

�
��X̂�. For each

X̂� 2 g, define Ĥ � :� �Ĥ; X̂��. The objective is to deter-
mine a unitary irrep in which each observable X̂� is repre-
sented by a matrix X���, with elements

 Xij��� :� hijX̂�jji; (1)

to be determined along with energy differences fEi � Ejg,
such that the sets of equations

 f�1�ij ��; �� :� hij�X̂�; X̂��jji �
X
�

C���hijX̂�jji � 0;

(2)

 f�2�ij ��� :� hijH ��X̂�jji � �Ei � Ej�hijX̂�jji � 0; (3)

are satisfied. In general, it will also be necessary to include
additional equations to ensure that the representation is the
one desired. For example, if the Lie algebra has Casimir
invariants, Ĉn�g�, equations can be included to require that
they are represented by the appropriate multiples of the
unit matrix, cnI.

Let a so-called objective function, F, be defined for a
finite irrep of dimension N as the sum of squares
 

F �
XN
i;j

�X
��

jf�1�ij ��; ��j
2 �

X
�

jf�2�ij ���j
2

�
X
n

jhijĈn�g� � cnjjij
2

�
: (4)

F cannot be negative and can only vanish when a precise
solution to the system of equations has been obtained.
Thus, for finite irreps, precise solutions to the above equa-
tions are obtained by minimization of F as a function of the
unknown matrix elements of the observables and the en-
ergy differences. If needed, the Hamiltonian matrix can
also be evaluated as a polynomial in the fX���g matrices to
determine the ground-state energy.

The challenge is to obtain accurate solutions for finite
submatrices of the observables, corresponding to a subset
of lowest-energy eigenstates, when the irrep is infinite.
Recall that a differential equation defined over the positive
half of the real line, 0< r<1, can be solved precisely
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over a finite interval 0< r 	 R, if one knows the boundary
conditions at R. Similarly, when infinite-dimensional ma-
trices fX���g are truncated to finite submatrices, their outer
rows and columns provide boundaries and their entries can
be adjusted to give accurate results for the matrices they
enclose. Boundary conditions are a concern for the
equations-of-motion method because the equations for a
subset of matrix elements fXij���; 1 	 i; j 	 Ng involve

 f�1�ij ��; �� �
X1
k�1

�Xik���Xkj��� � Xik���Xkj���� (5)

and, hence, Xik��� matrix elements with k > N.
This concern can be resolved as follows: to increase the

accuracy of matrix elements connecting lowest-energy
states, we apply a weighting factor wij � 1=��i� 1��j�
1�� to the expressions that should vanish for an exact
solution; i.e., redefine the objective function to be
 

F0 �
XN
i;j

w2
ij

�X
��

jf�1�ij ��; ��j
2 �

X
�

jf�2�ij ���j
2

�
X
n

jhijCn�g� � cnjjij
2

�
: (6)

We also make the approximation

 f�1�ij ��; �� 

XN�1

k�1

�Xik���Xkj��� � Xik���Xkj���� (7)

and corresponding approximations for the evaluation of
f�2�ij ��� and the matrix elements of Casimir invariants.
Minimization of F0 is then carried out iteratively starting
from a first guess. Thus, a simple model can be used to
provide a first guess which can then be made accurate by
the equations-of-motion method.

To illustrate, consider a Hamiltonian,

 Ĥ � � �
1

2M
r2 �

M
2
��1� 2���2 � ��4� (8)

for an object in a five-dimensional Euclidean space; � is a
radial coordinate in harmonic-oscillator units, r2 the
Laplacian, and M is a dimensionless mass parameter.
Such a Hamiltonian is of relevance in the nuclear collective
model [9–11] and of general interest as a model of a
system with two phases: when �< 0:5, the potential

 V���� �
M
2
��1� 2���2 � ��4� (9)

has a spherical minimum (at�0 � 0), and when �> 0:5, it
has a minimum given by�2

0 � �2�� 1�=2�. It is invariant
under the group of SO(5) rotations in the five-dimensional
space. Thus, its eigenfunctions are products of � wave
functions and SO(5) spherical harmonics. For a state of
SO(5) angular momentum v, the � wave function is an
eigenfunction of the radial component of Ĥ�

 

Ĥ�v�� � �
1

2M
d2

d�2 �
�v� 1��v� 2�

2M�2

�
M
2
��1� 2���2 � ��4�: (10)

This radial Hamiltonian is expressible [12] in terms of
an su(1,1) Lie algebra spanned by

 X̂ �v�1 �
d2

d�2 �
�v� 1��v� 2�

�2 ; X̂�v�2 � �2;

X̂�v�3 � 1� 2�
d
d�

:

(11)

In terms of su(1,1) raising and lowering operators,
 

Ŝ�v�0 �
1

4

�
�
X̂�v�1

M
�MX̂�v�2

�
;

Ŝ�v�� �
1

4

�
X̂�v�1

M
�MX̂�v�2 � X̂

�v�
3

� (12)

which satisfy the commutation relations

 �Ŝ�v�0 ; Ŝ�v�� � � �Ŝ
�v�
� ; �Ŝ�v�� ; Ŝ

�v�
� � � 2Ŝ�v�0 ; (13)

we obtain
 

Ĥ�v�� � 2�1� ��Ŝ�v�0 � ��Ŝ
�v�
� � Ŝ

�v�
� �

�
�

2M
�2Ŝ�v�0 � Ŝ

�v�
� � Ŝ

�v�
� �

2: (14)

For states of SO(5) angular momentum v, the su(1,1)
Casimir invariant

 Ĉ v�su�1; 1�� � Ŝ0�Ŝ0 � 1� � Ŝ�Ŝ� (15)

takes the value

 cv �
1
4�v�

5
2��v�

1
2�: (16)

To start the minimization process, a first guess is pro-
vided for small � (compared to the critical value �c � 0:5)
by the RPA. In the present example, the RPA amounts to
dropping the quartic term in a Taylor expansion of the
potential and making the approximation

 V���� 

M
2
�1� 2���2: (17)

For large �, the Hamiltonian Ĥ�v�� can be approximated by
its asymptotic limit, obtained from a Taylor expansion of
V���� about its minimum V���0�,

 Ĥ �v�as � �
1

2M
d2

d�2 �
�v� 1��v� 2�

2M�2
0

�
M!2

2
��� �0�

2:

(18)

This approximation becomes precise as �! 1 or M !
1. The physical content of these two limiting solutions is
clear. The first is that of a spherical harmonic vibrator. The
second is that of a rotor in a five-dimensional space, with

PRL 98, 080401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007

080401-2



moment of inertia M�2
0, coupled to a harmonic radial �

vibrator. Thus, with the substitution

 �� �0 �
1�����������

2M!
p �cy � c�; (19)

 

d
d�
�

���������
M!

2

s
�c� cy�; (20)

the asymptotic Hamiltonian is given by

 Ĥ �v�as � !
�
cyc�

1

2

�
�
�v� 1��v� 2�

2M�2
0

: (21)

Corresponding approximations for the su(1,1) operators
are given by

 X̂ 1 �
M!

2
�cycy � cc� cyc� ccy� �

�v� 1��v� 2�

�2
0

;

(22)

 X̂ 2 �

�
�0 �

1�����������
2M!
p �cy � c�

��
�0 �

1�����������
2M!
p �cy � c�

�
;

(23)

 X̂ 3 � 1� �
�����������
2M!
p

�0 � �c
y � c���c� cy�: (24)

These approximations provide first guesses for� outside of
a transition region j�� 0:5j 	 �. Inside the transition
region, one can proceed in steps using the results of one
calculation as a first guess for the next.

Before presenting results, it is instructive to consider
what would be required for accurate results by diagonal-
ization methods. Figure 1 shows the expansion coefficients
for the v � 0 ground state in a harmonic-oscillator basis
for � � 2, 10 and M � 2000.

The figure suggests that 420 basis states for � � 2:0
and 510 basis states for � � 10:0 are needed for the
ground-state wave function. More are required for excited
states. However, because the equations-of-motion ap-
proach does not use a predetermined basis, it is possible

to obtain accurate results for low-energy states with much
smaller matrices.

The number of unknowns to be determined is reduced by
exploiting the fact that Ŝ�v�0 is self-adjoint and �Ŝ�v�� �

y �

Ŝ�v�� . The lowest-energy level was set to zero and the
energies fEig of excited states regarded as unknowns. For
the calculations reported here, the function F0 was eval-
uated using MAPLE and minimized using the ‘lsqnonlin’
algorithm in MATLAB. Results obtained with N � 10 and a
range of � andM values are shown below. Minimization of
F0 determines 197 unknowns and approximately satisfies
500 equations. The values of m for which the entries of the
m�m submatrices are accurate to better than 8 significant
figures are listed in Table I. Numerically precise reference
results were obtained by diagonalizing very large
Hamiltonian matrices in the spherical harmonic basis.

Typical computation times to obtain the results shown
ranged from a few seconds to tens of seconds, achieving
minimum values of F0  10�20. A satisfying feature of the
equations-of-motion approach is that its advantages over
conventional diagonalization are most pronounced for
large values of M for which the diagonalization approach
is most slowly convergent. Worst case scenarios for the
equations-of-motion approach are when M is small and �
is large and when M is large and � � 0:5. In the former
case, the vibrational fluctuations are large, and in the latter
case the critical point, � � 0:5, is highly singular. Even
though the time taken to reach a minimum in such situ-
ations may be long, the results are invariably accurate. It is
also noteworthy that, in the absence of good starting
guesses, it is always possible to progress in steps from
previously found solutions.

For the present model, it happens that the � � 0:5
results are among the easiest to obtain for any value of
M. This is because of a critical-point scaling symmetry
[13] which means that if the results are known for one
value of M they can simply be inferred for any M. For
example, the Hamiltonian at � � 0:5 can be expressed
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FIG. 1 (color online). Expansion coefficients for an expansion
of the ground states of Ĥ��� with � � 2, 10 and M � 2000 in
the spherical (� � 0) harmonic-oscillator basis.

TABLE I. Values of m for the m�m submatrices, obtained
with N � 10 for v � 2, whose elements are accurate to at least 8
significant figures. The numbers in brackets are the estimated
sizes of the Hamiltonian matrix required to achieve similar
accuracy by diagonalization.

� M � 5 M � 50 M � 500 M � 5000

0.2 m � 7 (25) 8 (15) 9 (20) 9 (20)
0.5 7 (30) 7 (20) 7 (45) 7 (95)
0.7 7 (30) 6 (20) 6 (75) 7 (490)
1.0 7 (35) 5 (25) 7 (100) 8 (770)
2.0 7 (45) 5 (35) 7 (135) 8 (1065)
5.0 6 (65) 6 (60) 8 (175) 8 (1235)

10.0 6 (80) 6 (85) 8 (200) 8 (1295)
50.0 5 (150) 7 (180) 8 (310) 8 (>1500)
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 Ĥ 0:5��
1

2M
r2�

M
4
�4�

1

2M1=3

�
� �r2�

1

2
��4

�
; (25)

with �� � M1=3�. Thus, the energy-level spectrum of Ĥ0:5

is independent of M to within an M�1=3 scale factor.
Table II gives an indication of the accuracy obtainable

by equations-of-motion calculations.
It compares excitation energies for the Hamiltonian, Ĥ�

with � � 2, v � 2, and M � 50, obtained for various
subspace dimensions with those of precise calculations.
Even a calculation with N � 4 gives the first excitation
energy correctly to better than one part in 106. This nu-
merical accuracy is sustained for calculated energies up to
the N � 3 level.

Table III shows the excitation energies obtained by the
equations-of-motion method with N � 5 for the lowest
two states of each SO(5) angular momentum v �
0; . . . ; 4 forM � 50 and a range of values of �. The results
are precise to better than the level of precision shown.

It is instructive to note that the domains in which the
diagonalization and equations of motion are most success-
ful tend to be complementary. Matrix diagonalization is
often faster. However, it requires much larger matrices and
substantial extra work to set up the initial matrices and
interpret the results. In contrast, the equations-of-motion
method directly computes the matrices of all observables
in the physically relevant basis of energy eigenstates. The
advantages of the equations of motion are most evident for
states of �� 0:5 and large M. This is when states are
beginning to approach their asymptotic dynamical symme-
try limits. For example, for v � 2, � � 50, and M �
5000, one can obtain the spectroscopic properties of the
m � 8 lowest states in 93 s, using N � 10. To obtain
similar accuracy by diagonalization required matrices
larger than 1500� 1500 and 250 s on the same computer.
Hence, the equations-of-motion method wins hands down
in such a situation. These advantages of the RRKK ap-
proach are expected to be more pronounced for systems
with many degrees of freedom but relatively simple spec-
trum generating algebras.

An attractive property of the RRKK approach is that it
makes it possible to start from a simple approximation and
make it precise. Thus, the RRKK equations are particularly
relevant for the description of systems that exhibit quantum
phase transitions with variation of parameters, as this
Letter demonstrates. A natural possibility is to start with
a mean field description of a phase transition and, on either
side of the critical point, to use the RRKK equations of
motion to add the fluctuation contributions omitted in the
mean field treatment.
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TABLE II. Comparison between exact excitation energies and
values calculated from the equations of motion for � � 2, v �
2, and M � 50 for different values of N.

Exact N � 4 N � 6 N � 10

2.42 037 996 867 2.420 382 2.420 379 969 2.42 037 996 867
4.79 971 661 828 4.7999 4.7 997 167 4.79 971 661 828
7.13 617 068 891 7.01 7.136 180 7.13 617 068 891
9.42 775 046 658 � � � 9.4280 9.4 277 504 666
11.6 723 303 654 � � � 11.48 11.672 330 368
13.8 677 133 748 � � � � � � 13.8 677 136
16.0 117 890 142 � � � � � � 16.01180
18.1 028 968 041 � � � � � � 18.1033
20.1 406 192 426 � � � � � � 20.152

TABLE III. The lowest two excitation energies of states with
n � 0, 1 and SO(5) angular momentum v 	 4, computed by the
equations-of-motion method with M � 50 and N � 5. The
results agree with those of precise calculations to at least the
level of precision shown. Results of the asymptotic approxima-
tion (AS) are shown in the last column for � � 10.

n v � � 0 � � 0:5 � � 1 � � 10 AS, � � 10

0 0 0 0 0 0 0
0 1 1 0.40223 0.08712 0.04254 0.04211
0 2 2 0.84184 0.21629 0.10634 0.10526
0 3 3 1.31343 0.38597 0.19140 0.18947
0 4 4 1.81319 0.59436 0.29769 0.29474

1 0 2 0.96133 1.35973 6.13301 6.17262
1 1 3 1.45802 1.46666 6.17646 6.21472
1 2 4 1.97813 1.62318 6.24161 6.27788
1 3 5 2.52043 1.82581 6.32847 6.36209
1 4 6 3.08360 2.07109 6.43701 6.46735
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