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Oscillatory Dynamics and the Tank-Treading-to-Tumbling Transition
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We consider the motion of red blood cells and other nonspherical microcapsules dilutely suspended in a
simple shear flow. Our analysis indicates that depending on the viscosity, membrane elasticity, geometry,
and shear rate, the particle exhibits either tumbling, tank-treading of the membrane about the viscous
interior with periodic oscillations of the orientation angle, or intermittent behavior in which the two modes
occur alternately. For red blood cells, we compute the complete phase diagram and identify a novel tank-
treading-to-tumbling transition as the shear rate decreases. Observations of such motions coupled with our
theoretical framework may provide a sensitive means of assessing capsule properties.
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Early observations of dilutely suspended human red
blood cells in steady simple shear flow showed that while
cells suspended in a low viscosity media tumble continu-
ously, cells suspended in a fluid with sufficiently high
viscosity exhibit tank-treading [1]. Here, we use the term
tank-treading to describe a cell that maintains almost con-
stant shape and orientation in the laboratory frame, but
whose membrane circulates around the interior much like
the motion of a tank tread. Motivated by the observations
of tank-treading red blood cells, Keller and Skalak [2]
analyzed the motion of a viscous ellipsoid and concluded
that the behavior depends on the ratio of the viscosities of
the inner and outer fluids and was independent of the shear
rate. Moreover, for a given geometry, there was a critical
viscosity ratio separating two distinct behaviors: less vis-
cous ellipsoids tank treaded at a steady orientation to the
shear, while more viscous ellipsoids tumbled. Although
simple, this theory coherently explains many observations
for both capsules and vesicles.

Because of the control of size, shape, and material
parameters, vesicles have proved to be a useful system
for the study of soft objects in viscous flow [3-5].
Studies of synthetic vesicles have revealed unsteady types
of behavior and tested the limits of [2]. Thermal fluctua-
tions changing the vesicle shape can lead to measurable
fluctuations in the vesicle orientation [6]. Moreover, a
dynamical regime has been observed in which the vesicle
trembles around the flow direction, while exhibiting large
oscillatory shape changes [7]. Theoretical analyses for
deformable particles predicts both oscillatory and steady
regimes [8,9].

It has recently been observed that the dynamics of
synthetic microcapsules in simple shear flow depend not
only on the viscosity ratio, but also on the shear rate: when
the capsule surface tank treads about the interior, the
orientation oscillates; as the shear rate is lowered, the
capsule transitions from tank treading to tumbling [10].
Similarly, red blood cells oscillate about a fixed angle
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while tank treading and tumbling can be induced by low-
ering the shear rate [11]. Although both unsteady vesicle
[7-9] and capsule dynamics arise from the coupling be-
tween elasticity and orientation, the details of the elastic
mechanism produce distinct dynamics. In this Letter, we
provide a theoretical framework for analyzing the motion
of a capsule in simple shear flow. We attribute the observed
behavior to a periodic variation in the elastic membrane
energy during tank treading, which is a consequence of the
capsule’s nonspherical undeformed shape and resistance to
shear deformation. When the shear rate is decreased suffi-
ciently, the stress exerted by the flow is no longer sufficient
to drive the tank-treading motion through the maximum of
the elastic energy, and the capsule becomes solidlike and
tumbles.

Here, we model the cell or capsule as a viscous ellipsoid
of axes lengths a;, viscosity w', contained in an elastic
membrane and immersed in a fluid of viscosity w and
density p. The external flow unperturbed by the ellipsoid
is a simple shear flow of rate 7 in the laboratory reference
frame [see Fig. 1(a)]. We assume that material elements in
the membrane move along elliptical paths in the reference
frame of the ellipsoid as in [2]. Then, the position of each
membrane element is defined by a phase angle ¢(r), and
the tank-treading frequency is 9,¢(z). When ¢ = 277, a
point on the surface has returned to its starting point. We

are concerned with low Reynolds number flows (Re =

p 97 « 1) so that inertial effects can be neglected. Our

formulatlon extends prior analysis of a viscous ellipsoid
to include the effect of an elastic membrane, and we refer
the reader to [2] for derivations of the rate of change of the
orientation, 6, the rate of work done by the external fluid on
the ellipsoid, W, and the internal dissipation, D:
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FIG. 1. (a) Schematic diagram of a tank-treading red blood
cell (left) and capsule (right) filled with a fluid of viscosity u'
while immersed in a fluid of viscosity w sheared at a rate 7;
A= u'/u. 0 defines the orientation to the shear flow, and ¢
defines the membrane orientation. The red blood cell and capsule
are modeled as ellipsoids of axes a;. U, is the dimensionless
ratio of the elastic resistance to tank treading to the surface stress
applied by the external fluid. & is the phase lag between the
oscillations in # and the elastic energy. (b) Capsule parameters:
a\/a, =a,;/az =1.1; A=0; y=35; U, = 0.21. We note that
the phase shift of 7/4 between the shape and orientation has
been experimentally observed [10]. (c) Red blood cell parame-
ters: a,/a, =4, ay/az =1; A= 1.5,y =5; U, = 0.18.

D =Vu'fio,4% 3)

where V is the volume of the ellipsoid, and f; are functions
of the ellipsoid geometry defined in the endnote [12].

In a series of recent experiments on red blood cells in a
transient shear flow, Fischer [13] showed that after relaxa-
tion from deformation, the rim of a red blood cell is always
formed by the same part of the membrane. This shape
memory could not be eliminated by continuous deforma-
tion for periods up to 4 hours, showing that the effect is not
due to visco-elastic relaxation. These results imply the
existence of an elastic energy that has a minimum when
the membrane is in static equilibrium. Since an element
displaced from the rim can return to either side of the rim
depending upon its proximity [13], the elastic energy must
pass through two minima during a tank-treading revolu-
tion. Similarly, for the case of a polyamide capsule, the
unperturbed shape is a slightly nonspherical ellipsoid, and

we assume that the elastic energy during tank treading has
the same 7r-rotational symmetry as the undeformed shape.
Consequently, we take the elastic energy to have the form

E = Eysin’(¢). 4)

Fischer’s experiments [13] can also be used to estimate the
size of the elastic energy change, E,. When the shear flow
is stopped, the rate of work done by the external fluid W),
vanishes. The slender geometry of the red cell allows us to
neglect dissipation in the external fluid in this analysis so
that the rate of change in the elastic energy (4) balances
the internal dissipation (3) so that E;sin(2¢)d,¢ =
Vu'f1(9,4)*. The volume of a red blood cell is V = 7 X
1077 m? and f, = 15/4. The internal viscosity u' is due
to a combination of the cytoplasm viscosity and the mem-
brane viscosity. The dissipation due to the membrane
viscosity has been shown experimentally to be between 2
and 4 times the dissipation in the cytoplasm [14,15], and
we choose the value p/ = 4 tiperior = 4 X 1072 Pa - s cor-
responding to a membrane dissipation equal to 3 times the
dissipation in the cytoplasm. Fischer’s data show the maxi-
mum tank-treading frequency to be approximately d,¢ =
0.25 s~! so that

EO VM/fllat¢|max ~ 10~ 17 (5)

We can now estimate the amount of strain corresponding
to the stored energy E. For a membrane of shear modulus
E,~6X10°N/m [16] covering a surface § =~
1 X 107'% m? and undergoing a shear strain u, the elastic
energy is approximately E, = Efgzs. Equation (5) then
yields the characteristic shear strain # = 0.2, a reasonable
value. The properties of the red blood cell membrane are
determined by both the phospholipid bilayer and the ad-
jacent protein network. The high resistance to change in
membrane surface area insures that shear (area preserving)
deformations dominate. The observed resistance to shear
and the shape memory are most likely due to the under-
lying protein network [13]. Thus, shape memory arises
from the essential difference between capsules and lipid
bilayer vesicles: resistance to shear deformation.

Equating the rate of work by the external fluid (2) with
the internal dissipation (3) and the rate of elastic energy
storage (4) yields

Vu(f20,¢* + f379,¢ cos20) =

V:U«/flatd)z
+ Eysin(2¢)o, ¢, (6)

which can be solved for the tank-treading frequency d,¢ =

mf (U, sin2¢ — cos20) where A = u'//u is the viscos-

ity ratio and U, =

is the ratio of the change in the
V/wf

elastic energy to the work done by the external fluid during
arotation, i.e., how stiff the cell or capsule is relative to the
forcing from the external shear flow. Scaling time, t =
T/7y, yields the dimensionless system of equations for 6
and ¢,
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The system’s behavior is now completely determined by
U,, A, and the geometric ratios a;/a,, a,/as. Although
observations of micro capsules have shown that the capsule
geometry oscillates periodically during tank treading
[10,17], these oscillations amount to only a few percent
of the axes lengths. Solving (7) with the additional equa-
tions a; = a;, + 8,;5in’¢ shows that length oscillations of
the order of a few percent are a minor contributor to the
dynamics. In contrast to experiments on vesicles demon-
strating that shape changes were the main contributor to
changes in orientation [7], here, the influence of the stored
elastic energy on the tank-treading velocity dominates.

A simple way to understand the relationship between the
tank treading and oscillation periods is to expand (7) using
U, as a small parameter: ¢ = ¢g+ U,d;, 0=
0y + U,6,. Hence, 8 = 0y + U,csin@wT — §), where &
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FIG. 2. For red blood cells (a;/a, =4, a;/az =1, Ey=
10717 J, and A = 1.5) a novel transition from tank treading to
tumbling is predicted as the shear rate is decreased. For y > vy,
the membrane tank treads, and the cell orientation 6 oscillates.
For 7 < 4., the cell tumbles, and the orientation ¢ of the
membrane relative to its unperturbed position oscillates. For
Voe <7 < Vg, the cell exhibits intermittent behavior, with a
series of tank-treading revolutions followed by a tumble or a
series of tumbles followed by a revolution. Insets show the
dynamical regimes for y = 2, 1.35, 0.5.

and c¢ are constants, and the two minima of the elastic
energy in each tank-treading cycle cause the system to
oscillate twice about a fixed angle in the time it takes a
surface element to tank tread back to its initial position.
Furthermore, we see that the amplitude of the oscillation
scales as U, ~ 1/7. Slightly nonspherical polyamide mi-
crocapsules [10] and numerical simulations of slightly
nonspherical liquid capsules enclosed by elastic mem-
branes [18] in shear flow have shown oscillations at fre-
quencies twice the tank-treading frequencies.

The transition to tumbling behavior as the shear rate is
deceased occurs when the fluid shear stress acting on the
particle is no longer sufficient to force the membrane to
tank tread up the elastic energy gradient. The surface
velocity decreases as the capsule “solidifies* and begins
to tumble. In contrast to the tank-trading-to-tumbling tran-
sition for a purely viscous drop described by Keller and
Skalak [2], in which there is no dependence on the shear
rate, the transition described here depends on the shear rate
since U, ~ 1/7. The transition point is a function of the
system parameters: U,.(A, % “‘ “‘) When the viscosity ratio

is small, A < 1, the transmon occurs at U = 1, which

corresponds to the critical shear rate y, = Figure 2

Vuf
illustrates the tank-treading-to-tumbling transition for a red

blood cell.

Beyond the critical shear rate, the system exhibits type I
intermittent behavior [19,20], i.e., a series of oscillations
periodically interrupted by a tumble [21]. This transition is
most easily understood by studying the return map onto the
line ¢ = 0 in the # — ¢ plane modulo 7. For the initial
condition 8 = 6, ¢ = 0, the trajectory crosses the ¢ = 0
line again at F(6), thus defining the return map. Periodic
trajectories appear as fixed points in the return map,
F(6y) = 6, and the tank-treading-to-tumbling transition
occurs via a saddle-node bifurcation in which an unstable
limit cycle and a stable limit cycle coalesce and disappear.
Near the bifurcation U, — U, < 1, [20] showed that the
number of oscillations before an intermittent tumble scales

as n~1/{/(U, — U,.), as seen in Fig. 3. As U, is in-

-10 -8 -6
Log[Ue' Uec]

FIG. 3. Type I intermittency: n is the number of tank-treading
oscillations per tumble; U, — U,, is the difference between U,
and its value at the boundary between the tank-treading and the
intermittent regions. The plot is shown for A = 1.5 and a red
blood cell geometry (a,/a, = 4, a;/a; = 1). The —1/2 slope
on a log-log plot is indicative of Type I intermittency (see text).
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FIG. 4. Phase diagrams for the red blood cell (a,/a, = 4,
a;/a; =1) and capsule (a;/a, = a;/a; = 1.1) geometries.
For a given geometry, the system behavior is determined by
U,, the dimensionless ratio of the elastic resistance to tank
treading divided by surface stress from the external flow, and
A, the ratio of internal to external viscosity. For the red blood cell
geometry, the insets (A = 1.5, U, = 0.6557, 0.65) show how the
return map [F(6,) gives the value of # when the trajectory
modulo 77 beginning at 6 = 6, ¢ = 0 again crosses ¢ = 0]
changes as the system crosses the boundary between tank tread-
ing and intermittent regions. The stable and unstable fixed points
of the return map coalesce in a saddle-node bifurcation and
intermittent behavior ensues. Similarly, for the capsule geome-
try, a return map is shown for ¢ for A =20, U, = 0.6, 0.37.
Both transitions occur for the two geometries investigated.

creased further, the system enters a regime where the
intermittent behavior consists of a series of tumbles peri-
odically interrupted by a tank-treading revolution. Finally,
for U, > U,., the system fails to exhibit full tank-treading
rotations and simply tumbles. In this case, the relevant
return map is onto the line § = 0 in the § — ¢ plane so
that for the initial condition ¢ = ¢, @ = 0, the trajectory
crosses the 6§ = 0 line again at F(¢). This transition is
also a type I intermittent transition caused by the coales-
cence of two limit cycles. The phase diagram illustrating
the different regimes is shown for both the capsule and red
blood cell geometries in Fig. 4. The insets in Fig. 4 show
the return map in different regions and two examples of
intermittent trajectories.

By modifying (4) to include visco-elastic membrane
properties, our framework can also account for the shear
flow induced oscillations observed for oil drops coated

with a visco-elastic protein layer [17,22]. The details of
the behavior discussed in this Letter, particularly in and
around the intermittent regime, are sensitive to parameter
values. Therefore, mechanical characteristics of cells and
capsules could potentially be deduced from observations of
such behavior.
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