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Noise Squeezing in a Nanomechanical Duffing Resonator
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We study mechanical amplification and noise squeezing in a nonlinear nanomechanical resonator
driven by an intense pump near its dynamical bifurcation point, namely, the onset of Duffing bistability.
Phase sensitive amplification is achieved by a homodyne detection scheme, where the displacement
detector’s output, which has a correlated spectrum around the pump frequency, is down-converted by
mixing with a local oscillator operating at the pump frequency with an adjustable phase. The down-
converted signal at the mixer’s output could be either amplified or deamplified, yielding noise squeezing,

depending on the local oscillator phase.
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Micro- or nanoelectromechanical resonators are widely
employed for ultrasensitive force/mass measurements [1—
3]. A possible technique to improve the signal to noise ratio
in such devices is to implement an on-chip mechanical
amplification. Such an amplification, as well as thermome-
chanical noise squeezing in microresonators, has been
achieved before using parametric excitation [4,5]. In the
present work, we use a different mechanical amplification
scheme based on a bifurcating dynamical system, exploit-
ing its high sensitivity to fluctuations near its bifurcation
point [6—10]. This amplification scheme has been used
lately for quantum measurements of superconducting qu-
bits [11]. In our case, we use the onset of bistability in a
nanomechanical Duffing resonator as the bifurcation point.
In a Duffing resonator, above some critical driving ampli-
tude, the response becomes a multivalued function of the
frequency in some finite frequency range, and the system
becomes bistable with jump points in the frequency re-
sponse [12,13]. Previously, we exploited this property to
demonstrate high intermodulation gain [14]. This was
achieved by employing an intense pump signal to drive
the resonator near the onset of bistability, thus enabling
amplification of a small signal in a narrow bandwidth. Here
we employ this mechanism for the first time in nanome-
chanical resonators to demonstrate experimentally phase
sensitive amplification and noise squeezing. The system
under study, coined a nanomechanical bifurcation ampli-
fier, consists of a nonlinear doubly clamped nanomechan-
ical PdAu beam, excited capacitively by an adjacent gate
electrode.

The experimental setup is shown in Fig. 1. The resonator
is excited by two sources (a pump and a small test signal or
noise), and its vibrations are detected optically using a
knife-edge technique [15]. The device is located at the
focal point of a lensed fiber which is used to focus laser
light at the beam and to collect the reflected light back to
the fiber and to a photodetector (PD). The PD signal is
amplified, mixed with a local oscillator (LO), low pass
filtered, and measured by a spectrum analyzer. The mea-
surement is done in vacuum (107 torr) and at room tem-
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perature. The resonator has length [ = 100 um, width
w = 600 nm, and thickness t = 250 nm. The gap separat-
ing the doubly clamped beam and the stationary side
electrode is d =4 um wide. The device is fabricated
using a bulk nanomachining process together with electron
beam lithography [16].

The nonlinear dynamics of the fundamental mode of a
doubly clamped beam driven by an external force per unit
mass F(#) can be described by a Duffing oscillator equation
for a single degree of freedom x:

¥4 2u(1 + BxD)i + w3(1 + kxP)x = F(1), (1)

where w and (B are the linear and nonlinear damping
constants, respectively, w,/27 is the resonance frequency
of the fundamental mode, and k is the cubic nonlinear
constant. Our resonator has a quality factor Q = wy/2u =
2000 (at 1077 torr), and its fundamental mode resonance
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FIG. 1 (color online). The experimental setup. The device
consists of a suspended doubly clamped nanomechanical reso-
nator. The resonator is excited by two phase locked sources (one
source is used as a pump, and the other one as a small test signal
or as a noise source). The resonator’s vibrations are detected
optically. The inset shows an electron micrograph of the device.
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frequency is w,/27 = 500 kHz. Generally, for resonators
driven using a bias voltage applied to a side electrode,
Eq. (1) should contain additional parametric terms [4,17].
In our case, however, the effect of these parametric terms
on the dynamics is negligibly small [18].

The relative importance of nonlinear damping can be
characterized by the dimensionless parameter p =
2/3uB/Kkwq [18]. The relatively low value of p = 0.05,
obtained from the measured values of w,, u, and the
frequency of the bifurcation point [18], indicates that the
effect of nonlinear damping in the present case is relatively
weak. To investigate nonlinear amplification of a small test
signal, the resonator is driven by an applied force F(r) =
fpcos(wyt) + fycos(w,t + @), composed of an intense
pump with frequency w, = w, + o, amplitude f,, and a
small force (called signal) with frequency w; = w, + 6,
relative phase ¢, and amplitude f, where f; < f, and
0, 8§ < w,. This is achieved by applying a voltage of the
form V = Vg + V,cos(w,t) + Vcos(w,t + ¢), where
V4 1s a dc bias (employed for tuning the resonance fre-
quency) and V, KV, < V4. The resonator’s displace-
ment has spectral components at w,, at w,, and at the
intermodulations w,, * k&, where k is an integer. The one
at frequency w; = w, — 0 is called the idler component.

Strong correlation between the signal and the idler,
occurring near the edge of the bistability region, could be
exploited for phase sensitive amplification and noise
squeezing [7,19]. This is achieved by a homodyne detec-
tion scheme, where the displacement detector’s output is
down-converted by mixing with a LO operating at fre-
quency w,, with an adjustable phase ¢; o and phase locked
to the pump. The mixer’s output (IF port) has a spectral
component at frequency &, which is proportional to the
phasor sum of the signal and the idler, yielding phase
sensitive amplification, controlled by ¢ . In the notation
of Ref. [14], the displacement x() is given by

x(t) = JA(ne'r' + c.c., (2)

where A(1) = a, + a,e® + a;e”™" is a slowly varying
function (relative to the time scale 1/w »)» and the complex
numbers a,, a,, and a; are the pump, signal, and idler
spectral components of A(r), respectively. Suppose that the
LO voltage is given by VEO(r) = VO cos(w 1 + o),
and the mixer’s output is given by Vyo = Mx(t)V'O(¢),
where M is a constant term depending on the optical
detector’s sensitivity, amplification, and the mixing factor.
After passing through a low pass filter (LPF), the output
signal is

IMVEO[A(n)e 4o + c.c.].

The measured quantity is the amplitude R(S) of the
spectral component of the output signal at frequency 6.
R(8) depends on the LO phase ¢ and is given by

R(8) = sMV{Clase o + afelfro]. 3)

As ¢y is varied, the term |a e %10 + afei1o| oscillates

between the minimum value ||a,| — |a;|| and the maxi-
mum one |a,| + |a;|. When 6 — 0, and a,, is tuned to the
bifurcation point, we have |a,| = |a;| = f,/2wy8 [14];

hence, R(a)max = MV(%Ofs/zwofS and R(a)min/R((S)max -
0. The factor A = R(8)y.x — R(8)n characterizes the
phase dependence of the amplification. An example of a
measurement of R(8) vs ¢ is shown in Fig. 3(a).

To study the response to injected noise, the resonator is
excited by a fixed pump near the bifurcation point, together
with white noise. In this case, Eq. (1) is a Langevin
equation with F(t) = f, cos(w ) + F,(t), where F, (1) is
a white noise having a vanishing mean (F,(r)) = 0 and
spectral density Sp = 4wokpTeq /mQ [3]. Here Teq is the
equivalent temperature of the applied voltage noise; m is
the effective mass of the fundamental mode. In this case,
the displacement spectral density measured at the mixer’s
output will consist of two contributions, namely, the pump
response (& function peaked at & = 0) and a continuous
part S,(8) due to noise. In the limit § — 0, the spectral
density S,, which was calculated in Ref. [20], is given by

_ 1 +2{cos(¢ro — o) + {*
(1 -7

Sx SxOv (4)

where
S0 = Sr, H4afln + (@, = 0y = Jwokla, V],

and ¢ and ¢ are real parameters. While { vanishes in the
linear region, its largest value { = 1 is obtained along the
edge of the bistability region. Equation (4) implies that
when 6 — 0, the output noise will oscillate between a
maximum value, corresponding to the amplified quadra-
ture, and a minimum one, corresponding to the deamplified
(or squeezed) quadrature, as ¢y is varied [20]:
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FIG. 2 (color online). Typical frequency response curves for
various excitation voltages V,, and upward frequency scan. The
inset shows hysteresis response for V,, = 90 mV.
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Thus, the largest amplification obtained by this model
diverges at the bifurcation point, whereas noise squeezing
is limited to a factor of 4.

We now turn to describe the experimental steps. As a
first step, we find the onset of bistability and characterize
the bistability region. This is achieved by sweeping the
pump frequency upward and back downward for different
constant excitation amplitudes, without an additional small
signal or noise. Typical response curves are shown in
Fig. 2. The bistability region and the bifurcation point B,
(marked with a circle) are shown in Fig. 3(b). In the next
step, we characterize the small signal amplification by
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FIG. 3 (color online). (a) Measured R(6) vs LO phase ¢y .
(b) Measurement of the bistability (hysteresis) region. The
bifurcation point B, is marked with a circle. (c) The parameter
A vs frequency for four different V,, values [related to lines 1-4
in (b)].

exciting the resonator with a pump and a small test signal
where V,/V; = 25 and § = 30 Hz. Measurements of A vs
frequency are shown in Fig. 3(c) for four pump ampli-
tudes [related to lines 1-4 in Fig. 3(b)]. The response
of the frequency upward (downward) sweep is depicted
with a black (green) line. For V,, = 50 mV [Fig. 3(c)(1)],
the frequency sweep is contained within the monostable
region, and, consequently, the value of A is relatively
small. For V,=70mV [Fig. 3(c)(2)], V, =90 mV
[Fig. 3(c)(3)], and V), = 110 mV [Fig. 3(c)(4)], on the
other hand, the frequency sweeps cross the bistability
region and two peaks are seen for A, corresponding to
the upward and downward frequency sweeps. These peaks
originate from the high signal amplification in the jump
points of the pump response. Note that in this case the
width of the hysteresis loop (which is the distance between
the peaks) is smaller relative to the case when the pump is
the only excitation.

We now turn to investigate the resonator response to
pump and noise. First, the bifurcation point (B),) is located.
A frequency response of the beam, excited by the pump
(without noise) in the vicinity of B, is shown in Fig. 4(a).
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FIG. 4 (color online). (a) Pump response near B,. Upward and
downward sweeps are seen in black and green, respectively.
(b) Averaged spectrum response for pump and noise excitation.
The input noise spectral density is 1 mV/+/Hz. Circles indicate
the experimental data, whereas a theoretical fit is seen as a blue
line.
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FIG. 5 (color online). Noise squeezing. The spectral compo-
nent SY2 vs ¢10 for 6 = 10 Hz. The resonator is excited by
pump and noise. Blue line—pump near B),; green line—pump
tuned out of B, (200 Hz higher).

In the next step, the pump frequency is fixed to the bifur-
cation point, and we add white noise to the excitation

having spectral density S%,/nzoise =1 mV/+/Hz (since the
thermomechanical fluctuations are relatively weak, we
employ externally injected noise).

The measured spectrum taken around the pump fre-
quency [see Fig. 4(b)] demonstrates strong amplification
occurring in this region, a manifestation of the noise rise
phenomenon [21]. There is good agreement between the
theoretical fit (8! dependence) [7] to the experimental
data for 6 > 50 Hz. For smaller values of 6, the model
breaks down due to high order terms.

Noise squeezing is demonstrated in Fig. 5, where 6 =

10 Hz, S%,/nzoise = 1 mV/+/Hz, and S}/2 is plotted vs the LO
phase ¢ . Here the sweep time is 6 s, and the resolution
bandwidth is 2 Hz. The blue line demonstrates the case
where the pump is in the vicinity of the bifurcation point,
whereas the green line demonstrates the case where the
pump is far from the bifurcation point. The noise amplitude
amplification is about 6. The deamplified (squeezed) quad-
rature is below the measurement noise floor; hence, it
cannot be measured. Using the measured room tem-
perature thermomechanical fluctuations, we estimate the
noise floor (of the measurement system) to be 3.7 X
10~3 m/+/Hz [16].

To summarize, in this experiment we have demonstrated
experimentally phase sensitive amplification and noise
squeezing in a nanomechanical resonator using the onset
of Duffing bistability and a homodyne detection scheme.
This could be exploited for both signal amplification and

noise reduction, which could be useful for detection of
weak forces. Moreover, our noise squeezing scheme can be
exploited for enhancing the sensitivity of resonant detec-
tors based on nanomechanical resonators (e.g., mass de-
tector) [20]. On the other hand, such enhancement is
typically accompanied by an undesirable slowing down
of the response of the detector.
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