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Observation of Fractional Stokes-Einstein Behavior in the Simplest Hydrogen-Bonded Liquid
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Quasielastic neutron scattering has been used to investigate the single-particle dynamics of hydrogen
fluoride across its entire liquid range at ambient pressure. For 7 > 230 K, translational diffusion obeys the
celebrated Stokes-Einstein relation, in agreement with nuclear magnetic resonance studies. At lower
temperatures, we find significant deviations from the above behavior in the form of a power law with
exponent ¢ = —0.71 = 0.05. More striking than the above is a complete breakdown of the Debye-Stokes-
Einstein relation for rotational diffusion. Our findings provide the first experimental verification of
fractional Stokes-Einstein behavior in a hydrogen-bonded liquid, in agreement with recent computer
simulations [S.R. Becker et al., Phys. Rev. Lett. 97, 055901 (2006)].
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Our current view on the diffusive motions of a tagged
spherical particle within a liquid pictures it as executing
random walk movements characterized at long times by a
diffusion coefficient given by Stokes’ law [1],

kT
D=——, (1)
Cnr

where r stands for the particle radius, T the temperature, C
a constant whose value depends on the boundary condi-
tions imposed on the surface of the particle (67 for so-
called “stick” and 47 for “‘slip” boundary conditions),
and 7 the macroscopic shear viscosity.

Given the approximations involved in the derivation of
Eq. (1), its predictive capabilities to deal with experimental
data for simple liquids in their normal liquid ranges is both
surprising and intriguing [2]. Likewise, an understanding
of the deviations from this simple behavior and how these
relate to the underlying microscopic dynamics constitutes
an active area of research, particularly within the context of
supercooled and glass-forming liquids [3].

Our present communication was motivated by recent
computer simulation results from Becker et al. [4] which
report on the emergence of fractional Stokes-Einstein (SE)
and Debye-Stokes-Einstein (DSE) behavior in a prototyp-
ical model of a network-forming liquid. SE and DSE were
used to denote the obedience of the translational and rota-
tional diffusion coefficients to Eq. (1), respectively. By
fractional SE and DSE, the authors report on the finding
of a power-law dependence of D vs n/T with exponents &
well below the expected ¢ = —1. Here we provide direct
experimental scrutiny of the computer simulation results
by means of a quasielastic neutron scattering (QENS)
study carried out on liquid hydrogen fluoride (HF). This
fluid is composed of linear molecules which display the
strongest hydrogen bond (HB), evinced by an interaction
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energy per molecular pair of ~250 meV. In contrast to
other hydrogen-bonded liquids (HBL’s) such as water and
the lower alcohols, HF may be regarded as the simplest
HBL. In fact, its simple molecular shape and the strength
of the HB interaction allows the separation of translational
and rotational contributions to the measured differential
cross section, thus enabling us to determine robust esti-
mates for the two transport coefficients. In stark contrast
with the abundant literature on theoretical and simulation
studies [5], the aggressive nature of this material has
largely hampered detailed experimental corroboration of
most simulation results. Only recently, predictions regard-
ing its static structure or dynamical properties have been
confronted with experiment by means of neutron scattering
[6,7].

Experiments were carried out using the QENS-IPNS [8]
and the IRIS-ISIS [9] spectrometers. These two QENS
instruments enabled access to relatively narrow energy
ranges with high resolution (—200-1000 ueV, AE =
9 weV on IRIS-ISIS), as well as a broader energy-transfer
range at the expense of a lower energy resolution
(1500 eV, AE =45 peV on QENS-IPNS). Such a
combination provided a stringent cross-check to ensure
that the separation of quasielastic components was not
affected by the finite extent of the instrumental energy
windows. For sample preparation, an identical procedure
to the one used in recent work by some of us [7] was also
followed herein. Annular-geometry cells were manufac-
tured from Monel (Alloy 400) and surface passivated under
an atmosphere of fluorine gas [10]. A sample thickness of
0.50 mm was chosen in order to minimize excessive beam
attenuation as well as absorption and multiple-scattering
effects. We also performed quick runs across the melting
point (7' = 170-205 K). The observation of a sharp and
distinct drop in elastic-line intensity at 7 =190 + 1 K
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provided an upper limit for the presence of H,O of
<0.5% mol [11].

A representative set of QENS spectra is shown in Fig. 1.
Significant spectral broadenings of the narrower QENS
peaks are apparent in these data. Under the incoherent
approximation [12], this behavior is indicative of transla-
tional diffusion. In addition, a second yet much broader
QENS component extending a few hundred ueV is also
present but its energy width remains relatively constant
with Q, e.g., a localized or rotational mode. The observed
order-of-magnitude differences in energy widths for the
two QENS modes prompted us to fit these data without
explicit recourse to any particular model for the underlying
translational and rotational motions. To this end, a
Bayesian algorithm was used to find the highest number
of Lorentzian modes supported by the experimental data
[13]. As shown in Fig. 1, this procedure amply justifies the
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FIG. 1 (color online). QENS spectra at 7 = 195 K measured
on IRIS-ISIS. Fits are shown in red (or gray) and individual
Lorentzian components in dashed blue (or dark gray). In all
cases, the instrumental resolution has been folded into our
Lorentzian model for the purposes of fitting.

presence of two Lorentzian components and provides an
excellent description of the experimental data.

Figure 2 presents the narrow QENS widths obtained by
use of the aforementioned fitting procedure. For all tem-
peratures investigated, the experimental data obey a jump-
diffusion-type mechanism of the form

D;Q?
1—‘T(Q) = TD 0%’
1+ 2%

0

2

where 'y is the observed Lorentzian energy width
(HWHM), D7 is the translational self-diffusion coefficient,
and E, is related to a mean residence time 7, between
diffusive jumps via 7y = h/E, [14]. In Fig. 2, we have
chosen to show this expression in linearized form in order
to highlight our ability to distinguish between Dr (in-
versely proportional to the slope) and E, (inversely pro-
portional to the intercept).

Figure 2(b) shows D7 as a function of temperature. Our
results are compared with those obtained by pulsed-field-
gradient nuclear magnetic resonance (PFG-NMR) [11].
Our QENS data reproduce the PFG-NMR diffusion coef-
ficients at high temperatures. For 7 > 230 K, we obtain an
Arrhenius activation energy E, = 103 = 8 meV [black
solid line in Fig. 2(b)], in close agreement with a PFG-
NMR value of 102.8 meV. However, significant deviations
are apparent at lower temperatures, QENS data being con-
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FIG. 2 (color online). (a) Inverse QENS energy widths for the
translational mode as a function of momentum transfer (IRIS-
ISIS); (b) temperature dependence of the translational self-
diffusion coefficient and comparison with PFG-NMR results.

077801-2



PRL 98, 077801 (2007)

PHYSICAL REVIEW LETTERS

week ending
16 FEBRUARY 2007

sistently higher than PFG-NMR. These differences could
arise from a number of different reasons such as differ-
ences in sample purity. Notice, however, that the Fickian
behavior followed by the translational linewidths down to
the lowest explored temperatures ensure its pure mass-
difussion character. Furthermore, as we shall see below,
the separation in linewidths becomes more marked as the
temperature decreases so that our estimates for the trans-
lational diffusion coefficients become more accurate at the
temperature decreases down to freezing.

Further analysis of the scattered intensities provides
additional insight onto the physical origin of the observed
spectra. To this end, Fig. 3 shows the total intensity of the
translational mode as a function of Q along with a fit using

1(Q) = e~ (113w B(OR) 3)

where the first term is a Debye-Waller factor with mean
displacement u, jo(QR) is the zeroth-order spherical
Bessel function, and R is the radius of rotation.
Equation (3) has been derived by considering a dynamic
structure factor S(Q, w) of the form T(Q, w) ® R(Q, w)
where T(Q, w) and R(Q, w) correspond to translational
and rotational modes and ® denotes a convolution product.
Further, R(Q, w) assumes isotropic rotational diffusion
[15]. A mean displacement of u = 0.47 £ 0.04 A was
obtained from independent measurements in the crystal
phase at 7 = 170 K. It matches closely that of 0.46 A
reported by Axmann et al. [16]. Likewise, we find R =
0.88 = 0.05 A, in excellent agreement with that expected
for HF, namely, R = (my/myp)Ryr = 0.89 + 0.03 A,
where Ryr = 0.94 = 0.03 A has been taken from the neu-
tron diffraction study of McLain et al. [6]. Thus, our
analysis provides a direct link between the geometry of
the HF molecule and its dynamical radius of gyration.
Within the remit of the model for S(Q, w) presented above,
rotational diffusion at small energy transfers is char-
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FIG. 3 (color online). QENS form factor (T = 195 K). The
inset shows the temperature dependence of Dy (see text for
details).

acterized by a Lorentzian line shape of width I'x(Q) =
I'r(Q) + 2Dy, where Dy, is a diffusion coefficient related
to the characteristic rotational correlation time 75 via
Dy = h/671g;. This expression arises from the leading
term of the Sears expansion for rotational diffusion [15].
Given our value of R ~ 1 A, this assumption is well justi-
fied as higher-order terms proportional to jlz(QR) (1>2)
have a negligible contribution (<10%) over our energy and
momentum ranges. Dp’s for HF were then obtained as a
function of temperature by taking explicit account of the
previously determined translational QENS widths I'7(Q).
The inset in Fig. 3 shows the result of such a procedure for
experiments carried out on both spectrometers. Surpris-
ingly, these data do not show an obvious dependence
with temperature, yet it is reassuring that the same results
have been obtained by two independent measurements. A
microscopic explanation for this unusual behavior is be-
yond the scope of the present Letter, but it should be noted
that HF displays the largest known rotational constant after
molecular hydrogen (Byr ~ 21 cm™!) [17] as well as dy-
namic and kinematic viscosities 4—5 times smaller than
those of water at ambient temperature.

The validity of the SE and DSE relations as a function of
temperature is tested in Fig. 4 using the macroscopic
viscosities of Simons et al. [18]. For translational diffusion,
the low-temperature data follow a power-law exponent
& = —0.71 = 0.05 with a crossover to SE behavior above
230 K. For rotational diffusion, the power-law exponent
approaches zero within experimental error (¢ = —0.02 =
0.04). The observed behavior is very similar to what has
been extracted from computer simulations of the ST2
model of water by Becker et al. [4]. There, translational
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FIG. 4 (color online). Log-log plots of QENS diffusion coef-
ficients vs n/T (data in black circles; open: rotational; solid:
translational). SE and DSE behavior is characterized by a power-
law exponent ¢ = —1. For the purposes of comparison, diffusion
coefficients have been normalized by their corresponding high-
temperature values (7 = 290 K). Red (or gray) and blue (or dark
gray) lines show 7, for freely rotating HF in two and three
dimensions.
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diffusion was shown to deviate from the SE relations with
power-law exponents ¢ = —0.8, and was largely indepen-
dent of density. Moreover, it was also found that rotational
motion experienced a more dramatic enhancement than
translational diffusion, leading to power laws with & =
—0.25. Based on our experimental results, liquid HF dis-
plays an even more pronounced breakdown of the DSE
relation than that found for ST2 water. This behavior is
largely different from observations in other liquids, e.g.,
water, where rotational diffusion follows the Arrhenius
relation and activation energies approach librational fre-
quencies. It is also indicative of a strong decoupling of HF
rotational motions from the surrounding medium. To illus-
trate this point further, Fig. 4 shows the temperature de-
pendence of the inverse rotational period 7l for an
ensemble of isolated HF molecules. It has been obtained
by considering the root-mean-squared angular momentum
Jems = (J*)1/? and the classical relation 75\, = BypJime/h
for the cases of two- and three-dimensional rotation.
Whereas it is likely that this simple model cannot describe
accurately the complexity of stochastic rotational motions
in liquid HEF, it does serve to illustrate a plausible mecha-
nism for strong departures from the (expected) Arrhenius-
like dependence of microscopic transport coefficients.
Similar free-rotor—like behavior has also been observed
for HF in noble-gas matrices [19]. Moreover, the residence
time 7, exhibits a similar invariance with temperature, as
demonstrated by the common intercept to all curves shown
in Fig. 2 with 7¢ ~ 2.5 ps. The picture that emerges from
the present study suggests that fast and almost free rota-
tions (7 ~ 0.4 ps) take place within a temporal lapse 7,
which could tentatively be thought of as the time needed
for a molecule to bind to a nearest neighbor. It would be
insightful to see whether molecular-dynamics simulations
using a realistic description of the inter- and intramolecular
modes in HF can establish a link between the emergence of
fractional SE and DSE behavior and the presence of solid-
like excitations in this seemingly simple HBL, as recently
observed via inelastic neutron scattering [7].

In summary, the present Letter provides experimental
evidence of fractional power-law departures from the SE
and DSE relations in a liquid. Departures from the DSE
relation are strong and provide a vivid reminder of the
ability of molecules to execute rapid reorientational mo-
tions in media of very large viscosity, such as some mo-
lecular (rotator-phase) crystals [20]. Our findings
emphasize the growing importance of the finite shape of
molecules adjacent to the one executing Brownian-type
motions as the temperature is decreased. Under such cir-
cumstances, the shape and interactions with neighboring
particles do matter and the inclusion of “‘wetting” or
“sticking” conditions would make the description of the
transport coefficients in terms of the macroscopic viscosity
even poorer. A theory in the same spirit as those of Hill,
Gierer, and Wirtz [21] which emphasize the temperature
dependence of molecular interactions would pave the way

to further progress in our understanding of the phenomena
here described.
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