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We derive a quantum field theory of Josephson plasma waves (JPWs) in layered superconductors, which
describes two types of interacting JPW bosonic quanta (one heavy and one lighter). We propose a
mechanism of enhancement of macroscopic quantum tunneling (MQT) in stacks of intrinsic Josephson
junctions. Because of the long-range interaction between junctions in layered superconductors, the
calculated MQT escape rate � has a nonlinear dependence on the number of junctions in the stack. We
show that the crossover temperature between quantum and thermal escape increases when increasing the
number of junctions. This allows us to quantitatively describe striking recent experiments in
Bi2Sr2CaCu2O8�� stacks.
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The recent surge of interest in stacks of intrinsic
Josephson junctions is partly motivated by the desire to
develop THz devices, including emitters [1,2], filters, de-
tectors, and nonlinear devices [3]. Macroscopic quantum
tunneling (MQT) has been, until recently, considered to be
negligible in high-Tc superconductors due to the d-wave
symmetry of the order parameter. Recent unexpected ex-
perimental evidence [4,5] of MQT in layered superconduc-
tors could open a new avenue for the applicability of stacks
of Josephson junctions in quantum electronics [6]. This
requires a quantum theory capable of quantitatively de-
scribing these remarkable experiments. In contrast to a
single Josephson junction, stacks of intrinsic Josephson
junctions are strongly coupled along the direction perpen-
dicular to the layers because the thickness of these layers is
of the order of a few nm, which is much smaller than the
magnetic penetration length. This results in a profoundly
nonlocal electrodynamics [2] that strongly affects quantum
fluctuations in layered superconductors.

The two main results of this work are, first, the quantum
electrodynamics of Josephson plasma waves (JPWs) and,
second, the quantitative description of macroscopic quan-
tum tunneling in stacks of Josephson junctions. Namely,
using a general Lagrangian approach, we derive the theory
of quantum JPWs, which describes two interacting quan-
tum fields: a heavy JPW and a lighter one. We predict
resonances in the amplitudes of quantum processes asso-
ciated with the creation of pairs of JPW quanta. Using the
general approach, we develop a quantitative theory of
MQT in stacks of Josephson junctions. Our approach is
based on the analysis of coupled sine-Gordon equations
adequately describing the long-range interactions in
Bi2Sr2CaCu2O8�� stacks, in contrast to the phenomeno-
logical treatment [7] of capacitive coupled Josephson junc-
tions. We derive the MQT escape rate �, which is strongly
nonlinear with respect to the number of superconducting

layers N, and changes to � / N when N exceeds a certain
critical value Nc. The thermoactivated escape rate �T also
increases in coupled junctions in comparison with de-
coupled ones. However, the crossover between quantum
and thermal escape occurs at higher temperature for the
coupled junctions. More important, our results are in good
quantitative agreement with recent experiments [5].

Quantum theory for layered superconductors.—The
electrodynamics of stacks of Josephson junctions can be
described by the Lagrangian for the electromagnetic fields
~E and ~H interacting with matter: L � 1

c
~j � ~A� 1

8� �
~E2 �

~H2�, here without charge degrees of freedom. The current ~j
consists of both the Josephson current across the layers
(along the y axis, see top inset in Fig. 1(b)] and the London
supercurrent along the layers (along the x axis); the vector
potential is ~A � �Ax; Ay; 0�. This Lagrangian can be rewrit-
ten as:
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where ’n � �n�1 � �n � 2�sA�n�y =�0 is the gauge-
invariant interlayer phase difference, and pn �
�s=�ab�@x�n � 2��sA�n�x =�0 is the normalized supercon-
ducting momentum in the nth layer. Here, we introduce the
phase �n of the order parameter, the interlayer distance s,
the in-plane �ab and out-of-plane �c penetration depths,
the anisotropy parameter � � �c=�ab, and flux quantum
�0. The in-plane coordinate x is normalized by �c; the
time t is normalized by 1=!J, where the plasma frequency
is !J; also, @x � @=@x, @yfn � �ab�fn�1 � fn�=s, _�
@=@t, and the z axis is pointed along the magnetic field.
For simplicity, we now consider 2D fields with @z � 0. The
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interaction between the p and ’ fields occurs due to the
H2 � �@xAy � @yAx�

2 contribution to L, resulting in the
coupling term @xAy@yAx. Hereafter we ignore dissipation,
which was shown [4,8] to be negligible. Varying the action
S �

R
dtL produces

 

�’n � @
2
x’n � sin’n � @x@ypn � 0;

1

�2
�pn � @2

ypn � pn � @x@y’n � 0;
(2)

which reduces to the usual coupled sine-Gordon equations
[9] for �2 � 1. Note that a Lagrangian approach for stacks
of Josephson junctions can be formulated only for two

interacting fields ’ and p. This is because the vector
potential has two components, Ax and Ay, in stacks of
Josephson junctions, in contrast to 1D Josephson junctions
where one component of the vector potential is enough.

Linearizing Eqs. (2) and substituting p, ’ / exp�i!t�
ikxx� ikyy� we derive a biquadratic equation, �!2 � k2

x �

1��!2=�2 � k2
y � 1� � k2

xk
2
y � 0, for the spectrum of the

classical JPWs in the continuous limit (i.e., kys	 1) and
�2 � 1. Here, kx and ky are the wave vectors (momenta in
the quantum description, here, @ � 1) of the JPWs. This
equation determines two branches, ! � !a� ~k� and !b� ~k�,
of JPWs: !a� ~k� � 
1� k2

x=�1� k2
y��

1=2, !b� ~k� � ��k2
y �

1�1=2 up to 1=�2. The a branch (b branch) describes
Josephson plasmons propagating both along and perpen-
dicular (only perpendicular) to the layers. In order to
quantize the JPWs we use the Hamiltonian, H �P
n

R
dx��’n’n ��pnpn� �L, with the momenta �’n

and �pn of the ’n and pn fields, and require the standard
commutation relations 
’n0 �x0�;�’n�x�� � i��x� x0��n;n0 ,

pn0 �x

0�;�pn�x�� � i��x� x0��n;n0 (all others commuta-
tors are zero), where � is either a delta function or
Kronecker symbol. Expanding cos’n � 1� ’2

n=2�
’4
n=24� . . . , we can write H �H 0 �H an, where we

include terms up to’2
n in H 0, and the anharmonic terms in

H an. Diagonalizing H 0, we obtain the Hamiltonian for
the Bosonic free fields a and b: H 0 �

P
ky

R
�dkx=2���

f!a� ~k�a�a�!b� ~k�b�bg. The original fields ’n, pn in
Eq. (1) are related to the free Bosonic fields a and b by
’ 
 �a� � a�=�2!a�

1=2 �Z�b� � b�=
��2!b�
1=2� and

p 
 Z�a� � a�=�2!a�
1=2 � ��b� � b�=�2!b�

1=2, where
Z � kxky=�k

2
y � 1�. The spectra !a� ~k�, !b� ~k� show that

the ‘‘mass’’ of the a quantum equals one, and for the
heavier b quasiparticle is �.

The interaction between the a and b fields, including the
self-interaction, occurs due to the anharmonic terms in
H an 
 ��1=24�

P
n

R
dx’4

n � . . . . In the leading order
with respect to the bosonic field interactions, an a particle
can create either a� a or a� b pairs. Using the spectra
!a;b� ~k�, one can conclude that the amplitudes of these
processes have energy thresholds !a� ~k1� � 3 or �� 2
(similar to the 2mc2 rest energy threshold for e� � e�

pair creation in usual quantum electrodynamics). These
result in resonances in the amplitudes of quantum pro-
cesses (e.g., decay of a quanta).

Enhancement of macroscopic quantum tunneling.—
Now we apply our theory to interpret very recent experi-
ments [5] on MQT in Bi2Sr2CaCu2O8��. To observe MQT,
an external current J, close to the critical value Jc,
was applied [5]. When tunneling occurs, the phase
difference in a junction changes from 0 to 2�, which can
be interpreted as the tunneling of a fluxon through the
contact. This process can be safely described within a
semiclassical approximation and we use the approach
developed in Refs. [5,10] to calculate the escape rate
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FIG. 1 (color online). (a) The MQT escape rate � versus
dimensionless external current j. Red and blue points are the
experimental data, from Ref. [5], for two different samples. Red
and blue dashed lines are the curves �0�j� for these samples
taken from [5]. Red and blue solid lines are the functions ��j�
calculated from our Eq. (7), while the green dashed-dotted line
was obtained numerically from the nontruncated potential (5),
using data from Table 1 of [5], for their samples US1 and US4.
We use s � 15 �A, � � 300 for blue and � � 150 for red solid
curves. The inset of (a) shows the dependence of the escape rate
� versus the number of contacts N in the stack of Josephson
junctions (JJs), using parameters for sample US4 of [5] at j �
0:97 (red solid line). The blue dashed line shows N�0. (b) Our
analytically obtained ratio �T=� of thermal to quantum escape
rates for the single-junction sample SJ1 (blue dashed) and the
stack US4 (blue solid). Top inset in (b) shows the geometry
studied, with a nucleating fluxon (red shadow). Bottom inset
of (b) schematically shows a trial function (solid green line) and
its periodic extension (red dashed line).
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� � !P

���������������
30B=�

p
exp��B� of a fluxon through the poten-

tial barrier. Here, !P is the oscillation frequency of a
fluxon near the effective potential minimum, and B �R
1
�1 d�L�� � it� � 2

R
�1
�0
ds
’�

�������������
2V
’�

p
is described by

the Lagrangian (1) with the classical fields determined by
Eqs. (2). Integration should be performed in the functional
space of ’ between points �0;1 of zeros of the potential V
along a trajectory s
’�, which corresponds to the minimum
of the effective action B (that is, the maximum of the
escape rate). This is a complicated numerical problem,
which can be replaced by integration over an appropriate
set of trial functions. Below we will follow the latter
approach.

Following the experimental setup [5], here we consider a
stack of intrinsic Josephson junctions [see inset in
Fig. 1(b)] having the size L� s along the y direction;
i.e., the total number of contacts N � L=s� 1, and the
size in the x direction, 2d, is smaller than the Josephson
length, �J � �

���������������
s�ab=2

p
. In the limit �2 � 1, the equations

for ’ are reduced to standard coupled sine-Gordon equa-
tions [9], which in the continuum limit, kys	 1 and y �
ns=�ab, become �1� @2=@y2�
 �’� sin’� � @2’=@x2 � 0
with @’=@x � �jd=�c at x � �d=�c, where j � J=Jc.

We seek a solution ’ of the form ’ �  �x; y; t� �
arcsin�j� � jx2=2, where the field  obeys

 

�
1�

@2

@y2

�

 � � j�1� cos � �

��������������
1� j2

q
sin � �

@2 

@x2 � 0

(3)

with boundary conditions @ =@x � 0 at x � �d=�c. In
Eq. (3) inside square brackets we ignore the terms of the

order of d2=�2
c � 10�3 compared with

��������������
1� j2

p
� 0:1.

We can linearize Eq. (3) in all junctions except one,
where the fluxon tunnels. The linearized equation can be
solved by using the Fourier transformation,  �P
m

R
exp��i!t�exp�ikx;mx� m�y;!�d!=2�, where kx;m�

�c�m=2d. Here, in order to improve the convergence of
the Fourier series, we expand the solution  �x�, initially
defined for�d<x<d, periodically in�1<x<1, keep-
ing continuous  �x� and @ �x�=@x [see inset in Fig. 1(b)].
Since in the experiment [5] the sample connects two bulk
superconductors, we can choose the phase difference to be
zero at the top (y � L1) and bottom (y � L1 � L) layers of
the sample, and y � 0 corresponds to the position of the
fluxon tunneling; see inset in Fig. 1(b). Using the continu-
ity of  �y� at y � 0, we derive the solution of the linearized
equation in the form  m�y� �  m�0� sinh
qm�L1 � y��=
sinh
qmL1�, for y > 0, and  m�y� �  m�0� sinh
qm�L�

L1 � y��= sinh
qm�L� L1�� for y < 0. Here, q2
m � �k

2
xm ���������������

1� j2
p

�!2�=�
��������������
1� j2

p
�!2�.

In the junction at y � 0, where the fluxon is tunneling,
we cannot use the linearized equation. Instead we have
� � j�1� cos � �

��������������
1� j2

p
sin � �Jy=Jc; where �Jy is

the current flowing through the junction at y � 0 due to its

coupling with all the other junctions. In order to derive �Jy,
we use the Maxwell equations Jx � ��c=4��ab�@H=@y,
�Jy � �c=4��c�@H=@x, and the standard relation [11],
@ �y�0�=@x�8�2�2

ab�c
Jx�y��0��Jx�y��0��=c�0,
between the phase difference and the in-plane current;
H is the magnetic field. Following the approach de-
scribed in Ref. [2] we obtain �Jy=Jc � �2

J=��
2
c��R

1
�1 d!=�2��e

�i!tP1
m��1 k

2
x;mGme

ikxmx m�!�, where
Gm � sinh�qmL1� sinh
qm�L1 � L��=qm sinh�qmL�. Ne-
glecting contributions to the tunneling process arising
from higher frequencies, ! � !J�1� j2�1=4, and perform-
ing a reverse Fourier transform,  m � ��c=2d�

R
 �x��

exp��ikxmx�dx, we derive

 

�Jy
Jc
�

�2
J

2d�c

X1
m�0

k2
x;mGm

Z d=�c

�d=�c
dx0 �x0� coskxm�x� x0�:

(4)

Next, we construct an effective potential V
 � choosing
a proper trial function  . The tunneling fluxon can be
described as a smeared steplike function [see inset in
Fig. 1(b)], which can be parameterized by the fluxon
position x0 and the height � of the step in  . We assume
that �� � �x0. This quite natural assumption agrees well
with recent numerical simulations [12]. Indeed, the fluxon
starts penetrating at the sample edge where the induced
current �Jy suppresses the barrier. Staying in this position,
the amplitude of  increases, overcoming the barrier. As
soon as the barrier is overcome, the fluxon moves classi-
cally towards the other sample edge. Integrating  �y � 0�
over x, we derive for � the equation: d2 � =dt2 � �@V=@ � .
Here the effective potential V� � � can be written as

 V� � � � j�sin � � � � �
��������������
1� j2

q �
cos � � 1�

gn
� 2

2

�
;

gn�j� � �
�s

2x0d

Xmmax

m�0

G2m�1
1� cos�kx2m�1x0����������������
1� j2

p ;

(5)

where n � L1�ab=s labels the contact through which the
fluxon tunnels and 2mmax � 1< d=2�s. Harmonics with
m>mmax oscillate fast on a scale of the fluxon core, of
about �s < d, producing a small correction to the effective
potential. Note that the vortex core size of about �s	 �J
due to nonlocal effects [2]. For the samples used in the
experiment [5] we find mmax 
 1. Keeping only the two
first harmonics and optimizing the form of the tunneling
fluxon with respect to x0 we derive

 gn�j� 
 0:23Q
sinh�Qn� sinh
Q�N � n��

sinh�QN�
; (6)

and Q�j� � ��s=2d�1� j2�1=4. Note that this optimiza-
tion reduces to finding the maximum of �1�
coskx1x0�=kx1x0. The obtained optimal position x0 of the
tunneling vortex, which is about 0:4d from the sample
edge, is close to that found numerically [12] when opti-
mizing the real shape of the fluxon.
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Following a semiclassical approach [10] we calculate
the effective action B � 2

R 1
0 
2V� � ��1=2d � , where

V� � 1� � 0. This can be done either numerically (see green
dashed-dotted curve in Fig. 1) or analytically. For an ap-
plied current J close to Jc, we can expand both cos � and

sin � and obtain V� � � � � � 2� � �  1�=6, where  1�j� �

3
��������������
1� j2

p

1� gn�j��. Taking into account that the fluxon

can tunnel through any junction of the stack, we derive an
analytical expression for ��j� (in dimensional units)

 

��j�
�0�j�

�
XN
n�0

�1� gn�5=4 exp
�
�

36U0

5@!P

�1� gn�5=2 � 1�

�
;

(7)

where the summation is taken over allN contacts. Here, the
effective Josephson frequency is !P�j� � !J�1� j2�1=4,
the height of the potential barrier U0�j� � 2EJ�1�
j2�3=2=3, the Josephson energy EJ � �0Jc=2�c, and the
escape rate �0�j� for a single Josephson junction (see,
e.g., [5]) is given by �0�j� � 
216!P�j�U0�j�=�@�

1=2�
exp
�36U0�j�=5@!P�j��. The red and blue solid lines in
Fig. 1(a) show ��j�, which describe well the experimental
results in [5]. Some deviation between the experimental
data and the theoretical prediction at high currents is due to
a significant lowering of the potential barrier resulting in a
decrease of the accuracy of the semiclassical approxima-
tion. The dependence of � on the number N of junctions is
nonlinear, more complicated than N2 dependence, due to
the long-range interaction between different junctions,
described by the last term in the expression (5) for the
effective potential. This nonlinearity is strong for relatively
small N & Nc � d=�L, and the escape rate � becomes
proportional to N when the thickness L of the stack ex-
ceeds the effective interaction length d=�. However, for
the parameters used in the experiment [5] the value ��j�
obtained here nicely mimics the N2 dependence measured
in the experiment. The predicted strongly nonlinear depen-
dence of the escape rate on N [see inset of Fig. 1(a)] could
be an experimentally realizable test of our model.

The thermoactivated escape rate, �T�j� �

!P�j�=2��

P
n expf�EJ max
Vn� � ��=kBTg with Boltz-

mann constant kB, also increases due to the mutual inter-
action between junctions in the stack. In our analytical
approach we have max�Vn� � 2 3

1�n�=81. The ratio,
r�T� � �T=�, between thermal and quantum escape rates
is shown in Fig. 1(b) as a function of temperature for the
single junction SJ1 and the stack US4 used in Ref. [5]. The
thermoactivated escape starts to play a significant role
(r�T�> 1) at T 
 0:6 K for the stack and at T 
 0:4 K
for the single junction, in agreement with experiments [5].

Note that a more elaborated theory of MQT in layered
superconductors should include the effects of intrinsic
dissipation and interaction with the environment (shunting
impedance). As it was shown in Ref. [8], the intrinsic
dissipation renormalizes � by a factor of about 0.9 for
the considered case of the c axis junctions. Thus, the

main source of dissipation for stacks of intrinsic
Josephson junctions is the shunting impedance, which
can be ignored if the Josephson inductance, 2e=@Jc, is
smaller than the inductance of the shunting circuit. It is
evident that such a condition was satisfied for experiment
[5] since the escape rate for the single-junction sample SJ3
is well described by �0�j�, where dissipation is ignored.

Very different types of MQT models in stacks of
Josephson junctions, with no quantitative comparison
with experimental data, are also studied in [7]. Here we
consider the inductive coupling among layers, which is
known to be strong, instead of the capacitive coupling
among layers used in [7], which is known to be weak.
Moreover, theory [7] considers a model for photon-assisted
MQT tunneling instead of the current-biased tunneling
observed in Ref. [5].

Conclusions.—We consider quantum excitations in
stacks of junctions described by two Bosonic fields, one
lighter a and the other heavier b. We also derive the
interaction of these quantum fields and predict resonances
when either a� a or a� b pairs are produced. We suggest
a semiclassical theory of the fluxon quantum tunneling in
stacks of intrinsic Josephson junctions, which is in good
agreement with recent remarkable experimental observa-
tions. The obtained results might be potentially useful for
future designs of quantum devices.
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