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The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a
symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram
in the plane of energy and disorder strength is exposed, and demonstrates ‘‘levitation’’ and ‘‘pair
annihilation’’ of the domains of extended states analogous to that of the integer quantum Hall system.
The critical exponent � for the divergence of the localization length is estimated as � � 1:6, which is
distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall
systems. Our analysis strongly suggests a different universality class related to the topology of the
pertinent system.
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It is well established that localization properties of elec-
tron wave functions in disordered systems depend only on
spatial dimensionality, symmetry, and on the presence or
absence of topological terms in the Lagrangian, and are
independent of the details of the model. This universality
has been an issue of intensive interests over decades. The
aim of this work is to shed light on electron localization
and Anderson transition for a system which exhibits a very
robust metallic region as well as a new kind of topological
properties. This is achieved by studying localization prop-
erties of two-dimensional electronic systems exhibiting the
spin Hall effect (SHE—a generation of spin current per-
pendicular to an applied electric field [1–9]). The funda-
mental feature of the SHE is the underlying topological
structure of Bloch wave functions in systems with time-
reversal (TR) symmetry. Recall that for a TR violating
system such as the unitary ensemble in two dimensions,
the occurrence of the edge channel transport represented
by the topological structure [10,11] (associated with gauge
invariance and conserved charge current) dramatically af-
fects its properties: it implies the quantization of the Hall
conductance and leads to a delocalization transition in an
otherwise localized system. On the other hand, for TR
invariant systems, recently introduced Z2 topological num-
bers [12–16] are not directly associated with a conserved
current, and their influence on localization properties has
not yet been elucidated. It should be stressed that the
topological number Z2 [13] has a simple and transparent
physical content: It indicates the parity of the number of
Kramers degenerate edge modes in an open system.
Accordingly, SHE systems may be divided into: (1) spin
Hall insulators (SHI) [17]—band insulators showing non-
zero spin Hall conductivity such that Z2 is even. Conse-
quently, edge modes annihilate each other and do not close
the gap [18]. (2) quantum spin Hall phases (QSH—see
also Ref. [19]), are characterized by a bulk electronic band

gap with Z2 odd, thereby supporting the transport of charge
and spin in gapless edge states. The stability of the edge
modes against the backward scattering in this case is
guaranteed by Kramers’ theorem [20,21]. The physical
realization of the QSH phase has been proposed for several
explicit systems such as two-dimensional (i) graphene
[12,13], (ii) surface state of Bi [22], (iii) quantum well
structure of CdTe=HgTe=CdTe [23], and three-
dimensional (iv) Bi1�xSbx, (v) �-Sn and HgTe under pres-
sure [24].

In this Letter, we study a model for disordered graphene
[12,13] to see how the occurrence of gapless edge states
in the QSH phase (odd Z2) affects the Anderson localiza-
tion. From the universality of the Anderson metal-insulator
localization transition, it is expected that this results ap-
plies also to other QSH systems, i.e., two-dimensional
symplectic ensemble with nontrivial Z2 topological num-
ber. In contrast with the situation encountered for the
unitary ensemble (where topological term induces a
transition at a single energy), we encounter here a sym-
plectic system with a well-defined region of metallic states
albeit with a nontrivial topological structure. Using the
transfer matrix method [25], the phase diagram in the plane
of disorder strength and energy is revealed, which mani-
fests the features of levitation and pair annihilation of
extended states similar to the unitary QHE case with the
Chern number CU�1� � 0, albeit with finite energy width of
the extended region. Finite size scaling analysis of the
localization or delocalization transition yields an exponent
� � 1:6 for the divergence of the localization length,
which is distinct from both that of the symplectic (� �
2:73) [26] and that of the unitary QHE (� � 2:33) [27]
universality classes. This strongly suggests that the sym-
plectic model with odd Z2 number belongs to a new
universality class from the viewpoint of the Anderson
localization.
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We study the following Hamiltonian for the disordered
graphene [12,13]:

 H �
X

hiji

cyi �t� i�R�� � d̂ij�z	cj �
X

hiji0
cyi �t

0

� i�SO�ij�z�cj �
X

i

cyi ��v�i � wi � hx�x�ci: (1)

Here c�y�i is the spinor annihilation (creation) operator, � is
the set of the Pauli matrices, t is the conventional hopping
energy between nearest neighbor sites hiji (we use t � 1 as
the unit of energy), �R is the Rashba spin-orbit interaction
strength, and d̂ij is the unit vector connecting hiji. The
constant t0 is the conventional hopping energy between
second nearest neighbor sites hiji0. Here it is introduced
just for assuring stability of the numerical analysis by the
transfer matrix method and is fixed at the small value 0.01.
Moreover, �SO represents the spin-orbit interaction
strength with �ij � �2=

���
3
p
��d̂1 � d̂2� � 
1, where d̂1

and d̂2 are unit vectors along the two bonds connecting
hiji0, while �v is the alternation of the site energies be-
tween the A and B sublattices (�i � 
1). The random
potential wi is uniformly distributed between �W=2 and
W=2. Finally, the last term represents the magnetic field
along the x direction, which breaks TR symmetry. The
phase diagram of this model without the random potential
wi and the magnetic field hx has been already displayed in
the inset of Fig. 1 in Ref. [12]. A recent work introduces
another topological number, i.e., the spin Chern number
Csc, associated with twisted (spin-dependent) boundary
conditions [15]. It is pointed out that Csc is related to the
Z2 classification as Z2 � �Cscmod4�=2 [16]. In the plane
�v=�SO-�R=�SO, there is a finite domain of the QSH state
with Z2 � 1, Csc � 2, bounded by a curve where the gap
closes. Outside this domain, the gap opens up again and the
system becomes the usual SHI with Z2 � 0, Csc � 0. Note
that for �R � 0, the system is decoupled into two indepen-
dent unitary subsystems [28]. For �v < �cv, each unitary
model has CU�1�’s of opposite signs for the valence and
conduction bands, and the way of distribution of CU�1� ’s is
opposite for each unitary model. Thus the total CU�1� of
valence bands is zero, but Csc � 2. In the case of �v > �cv,
CU�1�’s of each band vanishes, and Csc is also zero. For
finite �R, these two unitary models are hybridized and
become a symplectic model. Csc of this hybridized system
is quantized as Csc � 2 in the domain of the QSH state,
while it vanishes in the domain of the usual SHI. With a
finite magnetic field hx, similar hybridization occurs, but
this breaks TR symmetry, and the model belongs to the
topologically trivial unitary class, where CU�1� of each
band is zero. Interestingly, in the clean limit, Csc of this
unitary model is still quantized, i.e., Csc � 2, while each
pair of edge states opens a gap due to the hybridization by
hx. (Note that Csc is well defined even in TR breaking
systems.)

The localization length �M�W;E� of a long tube of
2M-site circumference is calculated at energy E and dis-
order strength W by the transfer matrix method [25]. The
transfer matrices are iteratively multiplied to wave func-
tions (vectors), with the orthonormalizations at every nth
(n � 10) step to keep the information on the eigenvalue
with modulus closest to unity. The localization length can
be obtained from this eigenvalue. The M dependence of
the renormalized localization length �M�W;E� �
�M�W;E�=M determines the localization or delocalization
properties of the wave functions at energy E.

Figures 1(a)–1(c), display �M�W;E� up to M � 24 for
several values of W as functions of E for disordered QSH
system at hx � 0 (symplectic ensemble). The case �R � 0
has been studied in the context of quantized anomalous
Hall effect [28], and the two isolated extended states are
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FIG. 1 (color). Renormalized localization length �M�W;E� �
�M�W;E�=M for QSH with �R � 0 (a-1),(a-2),(a-3), �R � 0:1
(b-1),(b-2),(b-3), and �R � 0:2 (c-1),(c-2),(c-3). The disorder
strength W is increased from left to right as W � 5:0
(a),(b),(c-1), W � 7:0 (a),(b),(c-2), and W � 8:0 (a),(b),(c-3).
The other parameters are fixed as �SO � 0:3, �v � 0:5, and
hx � 0. (d) A localization or delocalization phase diagram
obtained in the plane of energy E and disorder strength W.
The red curve is the energy of the isolated extended states for
�R � 0, while the green and blue curves are the boundary of the
energy region of the extended states for �R � 0:1 and �R � 0:2.
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identified by M-independent �M�W;E�. There are two
energies at which extended states show up. As they merge
together the extended states disappear. This is consistent
with the scenario of levitation and pair annihilation of two
first Chern numbers CU�1� having opposite signs. With
finite �R, the isolated extended states turn into finite energy
region of extended states, the width of which increases
with �R. Note that these two regions of extended states
approach as the disorder W increases. The gap in the
density of states disappears already for W larger than
�3, but still the two regions are separated. When W is
further increased, these two energy regions of extended
states merge into one region, and eventually disappear. We
have also checked that, in the ribbon geometry, there
appear extended gapless edge states even when there are
no extended bulk states in the middle energy region. Based
on these results, we draw in Fig. 1(d) a phase diagram
depicting the location of extended states in the E-W plane.
The red curve for �R � 0 represents the trajectories of the
isolated extended states in the unitary (QHE) case, while
the phase boundaries between the localized and extended
states are given by green curves for �R � 0:1 and by blue
ones for �R � 0:2.

Let us confront some other cases with those discussed in
Fig. 1. Figures 2(a)–2(c) display the curves �M�W;E� for
the unitary model with hx � 0:25 at (a) W � 3:0,
(b) W � 4:0, and (c) W � 5:0. In this case, the extended
states have already disappeared since CU�1� is zero for each
of the split bands. Therefore the model is reduced to the
trivial unitary class, where all states in two dimensions are
localized with any finite amount of disorder [29]. (It is also
confirmed that the gapful edge states in the ribbon geome-
try are localized.) However, it should be noted that Csc for

this system is quantized as Csc � 2 in the clean limit. This
means that, in TR breaking systems, finite Csc does not
protect extended states and that protection would be
closely related to Kramers’ theorem. One might think
that the difference is due solely to symmetry, i.e., unitary
vs symplectic classes, and not to the topological property
of the QSH state. It is therefore important to compare with
the simple symplectic model which belongs to the trivial
Z2 classification. In our model, the SHI corresponds to this
case, and Fig. 3 shows �M�W;E� for �SO � 0:05, �R �
0:3, �v � 1:0 at (a) W � 2:6, (b) W � 3:0, and
(c) W � 3:4, respectively. It is evident here that the ex-
tended states disappear with much weaker disorder
strength, and the two energy regions of extended states
disappear without merging into a single one.

The above two cases, i.e., Figs. 2 and 3 strongly suggest
that the localization behavior of QSH system in Fig. 1 is
deeply influenced by the nontrivial topological aspect, and
is distinguished from that of the usual symplectic class. In
order to substantiate this expectation, we have studied the
critical property of the localization or delocalization tran-
sition of the QSH system.

Figure 4 summarizes the scaling analysis by displaying
�M�W;E� � f��E� Ec�M

1=�� at W � 5:0 with � being
the critical exponent for the divergence of the localization
length. Data for various E and M (up to M � 24) are
included and their collapse on a single curve indicates a
reasonable one parameter scaling behavior, which simul-
taneously determines � � 1:61
 0:10. We have also
studied transition at higher disorder W � 7:0, and found
� � 1:61
 0:10. This exponent should be confronted with
that of the standard symplectic universality class � � 2:73
[26], and that of the unitary model at strong magnetic field
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(with finite CU�1�) � � 2:33 [27]. The result � � 1:6 ob-
tained here is clearly distinct from both of these values, and
suggests a new universality class for the symplectic en-
semble with a nonzero topological structure. Intuitively, it
is anticipated that the localization problem should be in-
fluenced by the odd Z2 number. The construction of an
effective field theory for this class is left for future
investigations.

In summary, we have studied the localization or deloc-
alization problem of the QSH system, which represents a
special class of symplectic ensembles with nontrivial to-
pological properties. The phase diagram shows levitation
and pair annihilation of the two energy regions of extended
states, analogous to that of the unitary model with finite
Chern number (the integer quantum Hall effect). The criti-
cal exponent � for the localization or delocalization tran-
sition is estimated as � � 1:6, which is distinct from that of
the standard symplectic class (� � 2:73) and that of the
unitary class with nonzero Chern number (� � 2:33). This
strongly suggests that the QSH system belongs to a new
universality class characterized by a topological index such
as the Z2 index.

Finally, it is worth mentioning here that localization of
electronic wave functions in disordered graphene has re-
cently been studied [30–35]. In these works the electrons
are assumed to be spinless and therefore the underlying
ensemble is generically the orthogonal one where all states
are localized. Yet, due to the special structure of the
graphene lattice and the Dirac spectrum near the K, K0

points, the theory of weak localization developed for this
system appears to be extremely rich; i.e., it displays the
crossover from the symplectic class to the orthogonal one.
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