
Conformal Field Theory of Composite Fermions

T. H. Hansson,1 C.-C. Chang,2 J. K. Jain,2 and S. Viefers3

1Department of Physics, Stockholm University AlbaNova University Center, SE-106 91 Stockholm, Sweden
2Physics Department, 104 Davey Lab, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

3Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway
(Received 20 March 2006; published 12 February 2007)

We show that the quantum Hall wave functions for the ground states in the Jain series � � n=�2np� 1�
can be exactly expressed in terms of correlation functions of local vertex operators Vn corresponding to
composite fermions in the nth composite-fermion (CF) Landau level. This allows for the powerful
mathematics of conformal field theory to be applied to the successful CF phenomenology. Quasiparticle
and quasihole states are expressed as correlators of anyonic operators with fractional (local) charge,
allowing a simple algebraic understanding of their topological properties that are not manifest in the CF
wave functions. Moreover, our construction shows how the states in the � � n=�2np� 1� Jain sequence
may be interpreted as condensates of quasiparticles.
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In an intriguing line of development, many of the frac-
tional quantum Hall (FQH) effect wave functions, both
ground states and the associated quasihole states, have
been expressed as certain correlators in two-dimensional
conformal field theories (CFTs). Among these are the
Laughlin states [1] at Landau level fillings � � 1=m (m
being an odd integer) and the Moore-Read Pfaffian wave
function [2] at � � 1=2. While there is no fundamental
understanding of why the quantum mechanical wave func-
tions of a 2D electron gas in the lowest Landau level (LLL)
should bear any relation to correlation functions of vertex
operators in a 2D Euclidian CFT, many arguments for such
a connection were given in the pioneering paper by Moore
and Read [2] and discussed and extended in several sub-
sequent works [3].

The charged excitations in the FQH systems, in general,
have a fractional charge [1] and exhibit fractional statistics
[4]—they are anyons [5]. These are a manifestation of
subtle long range quantum correlations that characterize
the FQH states, which are said to be topologically ordered.
When several such excitations form composites, their
charges and statistical properties can be deduced from their
constituents using local rules. The fractional excitations as
well as these local rules of ‘‘fusion’’ and the related
‘‘braiding’’ (i.e., statistics) properties of the FQH states
find their counterpart in CFTs. The excitations are repre-
sented by operators, the fusion corresponds to their opera-
tor product expansion (OPE), and the braiding rules follow
from certain algebraic properties (monodromies) of their
correlation functions (or conformal blocks).

There are, however, important limitations to the CFT
approach. A connection between CFT and quasiparticle (as
opposed to quasihole) excitations at � � 1=m has so far
been lacking [3]. Furthermore, in spite of interesting
progress [6], no CFT expressions have so far been estab-
lished for the experimentally prominent FQH states in the

Jain series at filling fractions � � n=�2np� 1� and their
quasiparticle or quasihole excitations.

The composite-fermion (CF) formalism provides for a
unified description of the Jain ground states and their
quasiparticle and quasihole excitations. A composite fer-
mion is an electron bound to 2p units of vorticity, and the
ground states are n filled CF Landau levels. The phenome-
nology based on composite fermions has been successful,
both in comparison with experiments and with various
exact numerical studies [7].

CF wave functions for quasiparticles and quasiholes are
obtained by adding a composite fermion to, or removing it
from, a CF Landau level. Although phrased in a single
particle language, this is a nonlocal operation in terms
of electrons and qualitatively different from the corre-
sponding local [8] process in an integral QH state. Thus,
simplistic analogies can lead to qualitatively wrong con-
clusions. While fractional charge and fractional braiding
statistics can be derived from the pertinent CF wave func-
tions, these topological properties are not manifest.

In this Letter, we present an exact representation of the
CF wave functions in the Jain series as correlators of vertex
operators in a CFT involving n compactified boson fields
[9]. Quasiparticle and quasihole excitations are described
by operators that explicitly obey anyonic statistics and
have fractional charge, thus extending the CFT connection
between topological properties of excitations and algebraic
properties of vertex operators from electrons and quasi-
holes to include quasiparticles. The CFTs describing the
Jain states also explicitly give the effective theory within
the K-matrix approach [10] and thus the pertinent edge
theory. This gives further evidence for the conjecture in
Ref. [2] that the edge dynamics is given by the same CFT
that gives the bulk wave functions.

We first recall how to construct the ground state
and quasihole wave functions at the Laughlin fractions
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� � 1=m. Following Ref. [2], we define the vertex opera-
tors:

 V1�z� � ei
���
m
p

’1�z�; (1)

 H1=m��� � e�i=
���
m
p
�’1���; (2)

with z � x� iy. The field ’1 is a free massless boson
normalized as to have the (holomorphic) two point func-
tion h’1�z�’1�w�i � � ln�z� w�. ’1 is compactifed on a
circle of radius R2 � m so the (holomorphic) U�1� charge
density operator is J�z� � �i=

����
m
p
�@’1�z�, with @ � @=@z.

The corresponding U�1� charge Q � �1=
����
m
p
� 1

2� �H
dz@’1�z�, which can be thought of as vorticity, can be

read directly from the commutators �Q; V1�z�� � V1�z�
and �Q; H1=m���� �

1
mH1=m��� and equals 1 for the elec-

tron and 1=m for the hole. Following the basic idea of Read
[11], the total excess electric charge associated with a
vertex operator Qel � e�Q� �n� gets contributions from
both the electrons actually added �n and the change in
vorticity Q, corresponding to a depletion or contraction of
the electron liquid. If the argument of the vertex operator is
an electron coordinate zi, one electron is added, while no
electron is added if the argument is a hole coordinate �i.

The � � 1=m Laughlin ground state wave function
�L�fzkg� 	 �L �

Q
j<k�zj � zk�

m can be written [12]

 �L � hV1�z1�V1�z2� 
 
 
V1�zN�1�V1�zN�i: (3)

The wave function for a collection of Laughlin quasiholes
is given by similar expressions containing insertions of the
hole operator H1=m.

The most natural guess [2] for a quasiparticle operator
would be to change the sign in the exponent in the hole
operator of (2). This, however, introduces singular terms
�
Q
i�zi � ��

�1 in the electronic wave function. Inspired
by the CF wave functions, we instead define a quasiparticle
operator P1=m�z� by modifying one of the electron opera-
tors to have U�1� charge (1� 1=m). The excess electric
charge associated with such a modification is the difference
between the charges of the operators V1 and P1=m, i.e.,
�Qel � e��1� 1=m� � 1� � �e=m appropriate for a
Laughlin quasiparticle. The modified electron operator is
given by

 P1=m�z� � @ei�
���
m
p
��1=

���
m
p
��’1�z�: (4)

The wave function for a single quasiparticle with angular
momentum l takes the form (from now on, we will sup-
press the Gaussian factor expf�

P
ijzij

2=�4‘2�g, where
‘2 � @=eB):

 ��l�1qp �A

�
zl1e
�jz1j

2=4m‘2

�
P1=m�z1�

YN
i�2

V1�zi�
��

�
X
i

��1�izli
Y�i�
j<k

�zj � zk�
m@i

Y�i�
l

�zl � zi�
m�1; (5)

where A denotes antisymmetrization of the coordinates,

and the superscript of
Q

indicates indices omitted in the
product (e.g.,

Q�j�
i �

QN
i�1
i�j

and
Q�kl�
i<j �

QN
i<j

i;j�k;l
). The last

product in (5) comes from contracting the operators P1=m

and V1; since (m� 1) is even, the derivative is important to
ensure that antisymmetrization does not annihilate the
state. Put differently, contracting the electron liquid around
the point zi amounts to having a leading short distance part
in the wave function ��zl � zi�m�2, as seen from the OPE
P1=m�z�V1�w� � �z� w�

m�2, where the power changes
from (m� 1) to (m� 2) because of the derivative.

The wave function in (5) is identical to the correspond-
ing CF result [Eq. (5) of Ref. [13]] and, thus, has a good
variational energy and the correct fractional charge. A
localized quasiparticle state can be constructed as a coher-
ent superposition of the angular momentum eigenstates of
(5). Note that our construction is entirely within the LLL—
no projection is needed [14]. The operator P1=m�z� is not
fermionic, as can be seen from the OPE P1=m�z�P1=m�w� �
�z� w��m�4��1�m��. The precise connection to composite
fermions is clarified below.

The quasiparticle wave function of (5) has a different
character than those written earlier for the ground and the
quasihole states, in that it is a sum over correlators and that
it involves a prefactor. The factor zl gives the correct
angular momentum, and the exponential factor is chosen
to give the correct LLL electronic wave function. It is
suggestive that these prefactors precisely constitute the
LLL wave function f1 � zlie

�jzij2=4m‘2
for a charge e=m

particle in the LLL. Although we have no fundamental
derivation of this, we find below a similar interpretation in
the case of several quasiparticles, where their anyonic
nature is also manifest.

A natural generalization to two quasiparticles is

 �2qp �A

�
f2�z1; z2�

�
P1=m�z1�P1=m�z2�

YN
i�3

V1�zi�
��
:

(6)

The correlator gives a factor @i@j�zi � zj�m�2�1=m, so to
get an analytic electron wave function with the limiting
behavior ��zi � zj�m�1�l with l � 1 and odd, we should
take f2�zi; zj� � g�Zij��zi � zj�1�l��1=m�e��jzij

2�jzjj2�=4m‘2
,

where Zij � �zi � zj�=2. This is precisely the expected
wave function for two fractionally charged anyons in the
LLL. Evaluating the correlator gives the explicit CFT wave
function for two quasiparticles in relative angular momen-
tum l and center of mass angular momentum L:
 

�2qp �
X
i<j

��1�i�jZLijz
1�l��1=m�
ij @i@jz

m�2��1=m�
ij

Y�j�
k

zm�1
ki

�
Y�i�
p

zm�1
pj

Y�ij�
q<r

zmqr; (7)

where zij � zi � zj and the derivatives act on the whole
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expression to their right. The first nontrivial test of our
construction is whether (6) produces accurate wave func-
tions. To investigate that, we compare this CFT wave
function with the standard CF wave function [13]. The
latter is similar in structure but not identical; it can be
obtained from (7) by replacing z1�l��1=m�

ij @i@jz
m�2��1=m�
ij

with zlij@i@jz
m�1
ij . The comparisons, using the Metropolis

Monte Carlo algorithm, for a quasiparticle pair with L � 0
and l � 1 are summarized in Table I and Fig. 1 [15]. The
almost perfect agreement between the two wave functions
is surprising.

The properties of the operator P1=m, as well as the
analytic form of the wave function in (6), strongly suggest
that the CFT quasiparticle has good statistics properties,
which is also all but guaranteed by the near identity to the
corresponding CF wave function. However, an analytical
derivation of the quasiparticle statistics is both of intrinsic
interest and a demonstration of the power of the CFT
approach. In the case of quasiholes, charge and statistics

can be extracted from Berry phases evaluated using the
Laughlin plasma analogy or a generalization thereof based
on properties of CFT correlators, proposed by Nayak and
Wilczek [16]. Although the quasiparticle case is less
straightforward, since the electronic wave functions in-
volve sums over correlators, analytical calculations of
Berry phases are possible [9].

We now generalize to M quasiparticles at � � 1=m. We
consider a maximum density circular droplet obtained by
putting all of the quasiparticle pairs in their lowest allowed
relative angular momentum and with zero angular momen-
tum for the center of mass. For simplicity, we now special-
ize to m � 3. The resulting wave function
 

�Mqp �
X

i1<i2...<iM

��1�

P
k

ik YM
k<l

�zik � zil�
5=3e�

P
M
i
jzij2=12‘2

�

�
P1=3�zi1� . . .P1=3�ziM �

YN
j=2jfi1...iMg

V1�zj�
�

(8)

again differs from the CF wave function only in the order-
ing of the derivatives and the Jastrow factors and can be
expected to be accurate.

This suggests an exact representation of the CF
wave functions as CFT correlators by introducing
several bosonic fields. The factor

QM
k<l�zik � zil�

5=3�

exp��
PM
i jzij

2=12‘2� in (8), which has the interpretation
of an M-quasiparticle wave function f�zi� of a maximum
density droplet of anyons in the LLL, can be expressed as a
correlator of vertex operators of a second free bosonic field
’2. Define

 V2�z� � @ei�2=
��
3
p
�’1�z�ei�

������
5=3
p

�’2�z�; (9)

and consider the correlator

 �Mqp �
X

i1<i2...<iM

��1�
P

M
k
ik

�

�
V2�zi1� . . .V2�ziM �

Y
j=2jfi1...iMg

V1�zj�
�

(10)

of M V2’s and (N �M) V1’s. If we had chosen V2�z� �

ei�
������
5=3
p

�’2�z�@ei�2=
��
3
p
�’1�z�, (10) would have reproduced (8).

With the choice in (9), we obtain instead
 

�Mqp �
X

i1<i2...<iM

��1�
P

M
m
im@i1 
 
 
 @iM

Y
il<im

�zil � zim�

�
Y

�il<�im

�z�il � z�im�
Y
j<k

�zj � zk�
2: (11)

Here the indices j and k run over all particles, fimg
represent a subset of M indices, and f�img represent the
remaining N �M indices. While one can write general
M-quasiparticle wave functions similar to the two particle
case (6), it is only the maximum density droplet (8)
that allows for a simple expression in terms of con-
ormal blocks [17]. Using �’1�z�; ’2�w�� � 0 and

TABLE I. The expectation values of the Coulomb Hamiltonian
with respect to the two-quasiparticle CFT wave functions in (7)
(ECFT), with L � 0 and l � 1, and the corresponding CF wave
function in Eq. (14) of Ref. [13] (ECF). The energies are quoted
in units of e2=‘, ‘ �

��������������
@c=eB

p
. The last column gives the overlap

between the two wave functions. N is the number of particles.

N ECFT ECF h�2qpj�
CF
2qpi

10 7.766 19(62) 7.766 00(62) 0.999 930 1(2)
20 24.1403(19) 24.1402(19) 0.999 927 4(4)
30 46.3258(18) 46.3257(18) 0.999 927 4(3)
40 73.2339(17) 73.2339(17) 0.999 926 6(2)
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FIG. 1 (color online). The density profile for the CFT state in
(7) which represents two quasiparticles at � � 1=3, along with
the standard CF state. The total number of electrons is N � 40.
The excess charge (above the 1=3 ground state labeled by GS)
inside the disk of radius r has a clear plateau at 2=3 outside the
region containing the two quasiparticles and also away from the
edge. The radius r is shown in units of the magnetic length and
the density � in units of the � � 1 density �2�l2��1.
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h’i�z�; ’i�w�i � � ln�z� w�, one can show that the V2’s,
just as the V1’s but different from the P’s, are fermionic
operators, satisfying V2�zi�V2�zj� � V2�zj�V2�zi� � 0, and
also that V1 and V2 commute. If we want to interpret
V2 as a composite electron operator, it should have the
same charge as V1. This is ensured if we redefine the
charge density operator as J�z� � �i=

���
3
p
�@’1�z� �

�i=
������
15
p
�@’2�z�, consistent with the field ’2 being compac-

tified with radius R2 � 15.
Taking an equal number of V1’s and V2’s, i.e., N � 2M,

charge neutrality implies � � 1=3� 1=15 � 2=5. To see
that (11) in this case exactly reproduces the CF wave
function for the � � 2=5 state, we note that the latter is
given by

 �Mqp � P LLL

����������������������������������

�z1 : : �zN
�z1z1 : : �zNzN
: : : :

�z1z
M�1
1 : : �zNz

n�1
N

1 : : 1
z1 : : zN
: : : :

zM�1
1 : : zM�1

N

����������������������������������

Y
j<k

�zj � zk�2:

Using the Laplace expansion by the first M rows of the
determinant, then carrying out the lowest LL projection
(indicated by the symbol P LLL) by moving all of the �z’s to
the left, and making the replacement �zj ! 2@j reproduces
(11), apart from a normalization factor. This proof trivially
generalizes to m � 2p� 1, yielding the � � 2=�4p� 1�
states. Equation (8) can be interpreted as a ‘‘condensate’’
of quasiparticles, which resembles the approach of
Halperin and Haldane [4,18]. Note, however, that it differs
from a hierarchical wave function in that no explicit qua-
siparticle coordinates appear, and instead some of the
electron coordinates themselves are altered to generate
quasiparticles as explained above.

To create quasiholes in the 2=5 state, the operator
H1=3��� given in (2) is no longer appropriate since it
does not give holomorphic electron wave functions. That
is accomplished by using either of
 

H2=5 � e�i=
��
3
p
�’1�����i=

����
15
p
�’2��� or

H1=5 � e�i=
��
3
p
�’1�����2i=

����
15
p
�’2���;

(12)

with charges 2=5 and 1=5, respectively. The explicit elec-
tron wave functions are obtained by inserting the operators
(12) in the correlator (10).

By introducing more bosonic fields, the above construc-
tion can be generalized to wave functions for compact
states of CFs involving still higher CF Landau levels. For
example, the vertex operator for placing composite fermi-
ons in the third CF-LL is given by [9]

 V3�z� � @2ei�2=
��
3
p
�’1�z�ei�2=

����
15
p
�’2�z�ei�

������
7=5
p

�’3�z�: (13)

A general state in the Jain series � � n=�2np� 1� requires
n different fermionic operators Vs, s � 1 . . . n, which are

constructed from n free, compact, boson fields ’s and n�
1 derivatives. Again, the pertinent antisymmetrized CFT
correlator exactly reproduces the corresponding CF wave
functions. This also provides for a natural connection
between the CF theory and Wen’s general description of
topological fluids based on Chern-Simons actions and,
hence, candidate edge theories for the CF states. We have
shown [9] that for the � � 2=5 and � � 3=7 states the
effective theory based on the fields ’i, i � 1; 2; 3, exactly
reproduces Wen’s results [10].
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