
Nernst Effect in Semimetals: The Effective Mass and the Figure of Merit

Kamran Behnia,1 Marie-Aude Méasson,2 and Yakov Kopelevich3
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We present a study of electric, thermal, and thermoelectric transport in elemental bismuth, which
presents a Nernst coefficient much larger than what was found in correlated metals. We argue that this is
due to the combination of an exceptionally low carrier density with a very long electronic mean-free path.
The low thermomagnetic figure of merit is traced to the lightness of electrons. Heavy-electron semimetals,
which keep a metallic behavior in the presence of a magnetic field, emerge as promising candidates for
thermomagnetic cooling at low temperatures.
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In the presence of a magnetic field , the application of a
thermal gradient to a solid may generate an electric field
orthogonal to both of them. This is the Nernst effect that
was discovered by Ettingshausen and Nernst 120 years ago
in a study of elemental bismuth [1]. During the last few
years, following the observation of a finite Nernst signal in
the normal state of the underdoped cuprates [2], this effect
was studied for the first time in metals host to correlated
electrons. In several cases, a large Nernst signal was un-
expectedly resolved [3–9]. Theoretically, the Nernst re-
sponse of a simple metal is expected to vanish in the
absence of electron-hole asymmetry [10,11]. An ‘‘ambi-
polar’’ Nernst effect is present when the metal is compen-
sated [12], but the magnitude of the ‘‘giant’’ Nernst effect
observed in correlated metals remained puzzling. In most
cases, this signal emerged when the system was apparently
out of the realm of the Fermi liquid picture. In CeCoIn5,
the large Nernst signal was concomitant with anomalous
behavior in various electronic properties of the system [4].
In the Bechgaard salts, it occurred when the field was
oriented close to the magic Lebed angles [3,6]. In
URu2Si2 [5] and PrFe4P12 [8], the giant signal emerged
with the establishment of exotic electronic orders. These
observations suggested a possible link between a large
Nernst signal and non-Fermi liquid physics and raised a
fundamental question: what sets the magnitude of the
Nernst response of a Fermi liquid?

In this Letter, we present a study of thermal and thermo-
electric transport in elemental bismuth down to 0.2 K. Our
study confirms that in this semimetal the Nernst coefficient
exceeds by an order of magnitude the largest signal ob-
served in correlated metals. We argue that the Nernst co-
efficient of a Fermi liquid roughly tracks!c�=�F; with!c,
the cyclotron frequency, �, the scattering time and �F, the
Fermi energy. The exceptionally low value of carrier den-
sity in bismuth combined to a very long electronic mean-
free path in clean single crystals is a source of giant Nernst
signal. However, because of the low effective mass of the
quasiparticles, the electric conductivity is easily degraded
by the application of a magnetic field. A remarkable dif-

ference between light- and heavy-electron semimetals is
that only the latter continue to behave like a metal in the
presence of a moderate magnetic field and could be used
for constructing a cryogenic Ettingshausen refrigerator.

Figure 1 presents the thermal conductivity, � and elec-
tric resistivity, �, of the Bi single crystal (dimensions:
2:2� 1:1� 0:8 mm3) used in this study. In all measure-
ments, heat or charge was injected along the binary axis

 

FIG. 1 (color online). (a) Thermal conductivity, � of the Bi
single crystal. Solid line represents a aT � bT3 fit (see text).
Inset compares the magnitude of ��3K� of the sample of this
study (solid circle) with those reported in Ref. [15] (open circles)
as a function of mean diameter. (b) Resistivity of the same
sample at zero field and in presence of a field of 0.1 T.
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and the magnetic field was oriented either along the trigo-
nal or the bisectrix axes. As seen in the lower panel, the
residual resistivity was �0 � 2:5 �� cm (i.e., residual re-
sistivity ratio � 47). The thermal conductivity, �, dis-
played in the upper panel, presents a maximum at 4.1 K.
Below this temperature, � follows a T3 behavior character-
istic of ballistic lattice thermal conductivity. The electronic
contribution, which generates a small T-linear term be-
comes only visible below 0.5 K. The expression � � aT �
bT3 with a � 1 W K�2 m�1 and b � 158 W K�2 m�1 fits
the data up to 3.6 K. The first term represents the electronic
contribution and, as expected by the Wiedemann-Franz
law: a ’ L0=�0 (L0 is the Lorenz number). The second
term represents the lattice thermal conductivity. Since,
�ph �

1
3Cphvs‘ph, by taking the reported values for the

sound velocity, vs � 1100 m=s [13], the lattice specific
heat (Cph � 35 T3 J m K�1 [14]) and the measured value
of b, one can estimate ‘ph � 1:1 mm. The closeness of this
length to the sample’s mean diameter (1.5 mm) validates
the hypothesis of ballistic phonon transport. Our data
should also be compared with a previous study of thermal
conductivity (restricted to T > 2 K) on crystals of various
dimensions [15]. Above 4 K, the phonon mean-free path
drastically decreases as a function of temperature; � is not
set by the sample size and our data can be superposed on
the results reported by Boxus et al. [15]. Below 4 K, and as
seen in the inset of the figure which compares our data with
the samples used in that study, � at a given temperature
(say 3 K) is simply proportional to the sample’s mean
diameter. This provides further evidence that the phonon
mean-free path is set by the sample size.

The lower panel of Fig. 1 recalls the remarkably large
magnetoresistance of bismuth. The application of a modest
magnetic field of 0.1 T enhances the magnitude of resis-
tivity by more than 2 orders of magnitude. In bismuth, as
well as in graphite [16,17], the magnetic field induces an
insulatinglike behavior. The ultimate criterion to qualify as
a metal, however, is to have a Fermi surface and this is the
case of the system under study in the zero-temperature
limit. The giant magnetoresistance can be traced to the
large value of!c�. In bismuth, there are 3� 1017 holes per
cm3 and a same density of electrons. Therefore, the mag-
nitude of �0 implies !c� �

eB�
m� ’ 42 at 0.1 T and a 300-

fold increase in resistivity is unsurprising [17]. The open-
ing of an excitonic insulating gap at low applied magnetic
fields has also been suggested [18].

We now turn to the Nernst coefficient. Figure 2 presents
the temperature dependence of j�j � N=B � Ey=�BrxT�.
As seen in the figure, we found that for two orientations of
the magnetic field � peaks at 3.8 K to a value of 7 mV=K T.
This large value falls in the range of magnitudes reported in
studies published decades ago [19–21].

Since the contribution of electrons to heat transport is
negligible and since bismuth is a compensated metal (ne ’
nh) with a Hall angle much smaller than !c�, there is no
surprise that we did not detect any measurable thermal Hall

effect. As heat current and temperature gradient vectors
remain parallel in the presence of a magnetic field, the
adiabatic and the isothermal Nernst coefficients are virtu-
ally identical in bismuth [19].

As seen in Fig. 3, the magnitude of the Nernst coefficient
in bismuth is such that it dwarfs what is reported for other
metals, even those subject to a generous attribution of the
adjective giant. It is generally accepted that bismuth is a
Fermi liquid. Why then is the magnitude of its Nernst
coefficient so large? We will argue below that this is
because of its unique electronic properties [22], namely,
the combination of an exceptionally low-carrier density
(10�5 carriers per atom) and a very long electronic
mean-free path (40 �m in our sample).

Before this, let us briefly consider the role played by
phonons. In bismuth, around 3 K, the typical phonon
wave vector becomes comparable to 2kF [23]. Therefore,
phonon drag should be the most important source for
the Nernst signal at its peak temperature [19,20].

 

FIG. 2. The temperature dependence of the absolute value of
the Nernst coefficient of the bismuth single crystal for two dif-
ferent orientations of the magnetic field. The solid line represents
a linear function �T with � � 283 !c�

�FB
� 0:38 mV K�2 T�1 (see

text and Table I). Both this function and the low-temperature
data are displayed in the inset as a �=T vs T plot.

 

FIG. 3 (color online). The magnitude of the Nernst coefficient
in bismuth compared to what is found in some other metals
[4,5,7,8,12].
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Conceptually, it is easier to picture this phenomenon [24]
in an Ettingshausen geometry: when electrons loose their
impulsion in a collision with phonons, the electric current
gives rise to an entropy current of phononic origin, hence a
finite Ettingshausen effect. Since the Bridgman relation
ties the amplitudes of the Ettingshausen and Nernst effects
[24], this implies that the Nernst effect should also be
enhanced. In our case, below 4 K, electron-phonon scat-
tering does not manifest itself either in charge or heat
transport. Ballistic phonon conductivity means that the
electrons do not scatter phonons in a visible way. As for
charge conductivity, it changes by less than 10% below
4 K, which means that the electrons are also mostly scat-
tered by defects. All this indicates that electron-phonon
scattering events in this regime do not occur frequently.
Even though, since the phonon lifetime is orders of mag-
nitude longer than the inelastic lifetime of electrons, such
rare events can drastically amplify the Nernst effect. The
presence of this phonon-drag Nernst effect complicates the
quantitative analysis of the purely electronic (often called
diffusive) component of the Nernst effect. However, a
finite �=T persists down to the lowest temperatures of
this study (see the inset of the figure). Let us argue that
the magnitude of this T-linear � is comparable to what is
expected from the electronic properties of bismuth.

Within the Boltzmann picture, the Nernst coefficient of a
metal is given by the following expression [25,26]:

 � �
�2

3

k2
BT
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@ tan	H
@�
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�
�
�
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�
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�
�
�
�
��F

; (1)

which was first derived by Sondheimer [10]. The first
expression links � to the Hall angle, tan	H and was dis-
cussed in detail in Ref. [26]. In the case of bismuth,
because of the compensation between electrons and holes,
tan	H is much smaller than !c� of each type of carriers. In
order to estimate the order of magnitude of the Nernst
coefficient in a metal, let us replace @�

@� j�F by �
�F

[5]. This
leads to the following gross scale for the Nernst signal:

 � 	 283
�V

K

!c�
B

kBT
�F

: (2)

Thus, there are three distinct ways of enlarging a
T-linear �: increasing the scattering time, increasing the
cyclotron frequency and reducing the Fermi energy. All
these three routes are taken in bismuth. The samples are
clean (enhancing �), the effective mass is small (leading to
a large !c) and finally (and most importantly) the carrier
density is low (pushing down the Fermi energy in spite of
the reduced effective mass). The solid line in Fig. 2 repre-
sents what is expected according to this expression taking
!c�=B � 420 T�1 and �F=kB � 310 K [27]. It appears to
give a satisfactory account of the purely diffusive part of
the Nernst signal.

Let us now compare bismuth with URu2Si2 and
PrFe4P12. In the two heavy-fermion metals, a large
Nernst signal emerges below a temperature associated
with an exotic phase transition. The case of bismuth sug-
gests that the most likely source of the large Nernst signal
in these two compounds is the semimetallic nature of the
ordered system after the opening of a gap which destroys
most of the Fermi surface. Table I gives a list of electronic
properties of these three metals. The low level of the carrier
density is one feature that they share. As seen in the table,
the magnitude of the Nernst effect scales with !c�=�F.
This conclusion implies that future experiments should
resolve a large Nernst signal in heavy-fermion semimetals
without any exotic order. While the case of bismuth shows
that a giant Nernst effect cannot be considered as a solid
signature of non-Fermi liquid physics, it also demonstrates
that we still lack a precise quantitative understanding of the
Nernst coefficient even in the zero-temperature limit.

The result has also an implication for applied research.
In the quest for useful thermoelectricity [24,33], the fig-
ure of merit, ZT � S2
T

� , quantifies the adequacy of a
given material for thermoelectric refrigeration. In metals,
the Wiedemann-Franz law sets the magnitude of �


T �

L0 � 2:44 � 10�8 V2=K2. Therefore, a thermopower of

TABLE I. A comparison of three semimetals. kF and m� are the radius and the effective mass of a Fermi surface (the hole ellipsoid s
in bismuth, the � and the � bands in the ordered states of PrFe4P12 and URu2Si2). � and n are electronic specific heat and carrier
density. The electronic mean-free path, ‘e, is estimated for samples used in the Nernst studies. The value for ZT� is the highest
obtained for B< 12 T.

Bi PrFe4P12 URu2Si2 Ref.

kF (nm�1) 0.14 0.7 1.1 [22,28,29]
m��me� 0.06 10 25 [27–29]
��mJ K�1 mol�1� 0.048 100 65 [14,30,31]
n (per f.u.) 10�5 �5–18� � 10�3 �3–5� � 10�2 [5,8,22,28]
‘e (�m) 40 0.4 0.1 [5,8]
!c� (B � 1 T) 420 0.85 0.08
�F (K) 310 9 22 [27,30]
283 !c�

�F
��V=K2 T� 383 27 1.1

�=T��V=K2 T��0:3 K� 750 57 2.4 [5,8]
ZT� (1 K) <0:001 0.19 �0:01 [5,8,32]
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S	
������

L0

p
�155�V=K would imply ZT 	 1. Recently,

Harutyunyan et al. [34] used CeB6 (with S ’ 120 �V=K
around 6 K) to construct a Peltier cooler at cryogenic
temperatures [34]. In the case of an Ettingshausen re-
frigerator, the relevant parameter is the thermomagnetic
figure of merit ZT� �

N2
T
� [24] and

������

L0

p
sets a similar

threshold for N. Therefore, its magnitude in PrFe4P12

(�100 �V=K at T � 1 K and B � 4 T) opens a possible
route for thermomagnetic cooling at sub-Kelvin tempera-
tures [8]. This is not the case of bismuth. In spite of its
much larger Nernst coefficient, it does not qualify as a
suitable thermomagnetic material. Since the magnetoresis-
tance is large, ZT� remains very small. This can be seen in
Fig. 4, which compares the field-dependence of N and ZT�
in bismuth and in PrFe4P12. As a consequence of the
lightness of carriers in bismuth, !c �

eB
m� is large and the

magnetic field induces a huge decrease in electric conduc-
tivity. Meanwhile, a large heat conductivity is maintained
by phonons and the WF law is not relevant. In contrast with
bismuth, the large Nernst coefficient of PrFe4P12 is mostly
due to the smallness of �F. Electrons are heavy, !c is not
large and the system keeps its metallic behavior in a
magnetic field. This is the fundamental reason behind its
sizeable ZT� (’0:2 at 4 T and 1 K). Such heavy-fermion
semimetals emerge from our analysis as promising ther-
momagnetic materials at kelvin temperatures.

In comparison with its Peltier counterpart,
Ettingshausen cooling presents the obvious drawback of
requiring a magnetic field. However, there are reasons to
suspect that it may prove to be promising. First, contrary to
the Seebeck effect and as argued above, the Nernst effect is
expected to scale with the mean-free-path. Therefore, the
purification of the selected candidate can enhance its ther-
moelectric performance. Moreover, the geometry of the
Ettingshausen effect allows the design of an infinite-stage
refrigerator [35].

In summary, we studied the Nernst effect in bismuth and
argued that the electrons present a large Nernst response

whenever their Fermi energy is low, their cyclotron fre-
quency large and their scattering time long. Moreover,
when they are heavy enough, a metallic behavior is main-
tained in presence of a magnetic field and thermomagnetic
refrigeration at low temperatures becomes possible.
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FIG. 4 (color online). The Nernst signal (a) and the thermo-
magnetic figure of merit (b) in Bi and in PrFe4P12 as a function
of magnetic field at T � 1:2 K.
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