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Motivated by recent graphene transport experiments, we undertake a numerical study of the con-
ductivity of disordered two-dimensional massless Dirac fermions. Our results reveal distinct differences
between the cases of short-range and Coulomb randomly distributed scatterers. We speculate that this
behavior is related to the Boltzmann transport theory prediction of dirty-limit behavior for Coulomb
scatterers.
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Introduction.—Graphene can be described at low ener-
gies by a four component massless Dirac-fermion (MDF)
model [1] that has long attracted theoretical attention
because of appealing properties including chiral anomalies
[2–5], randomness induced quantum criticality [6–8],
relevance to high Tc superconductors [9,10], and various
unusual transport properties [5–19]. The recent experimen-
tal realization of single-layer graphene sheets [20] has
made it possible to confirm a number of theoretical pre-
dictions, including unusual quantum Hall effects [21,22],
and has also revealed some surprises. The main findings
can be summarized as follows: (i) graphene’s conductivity
� never falls below a minimum value (�min) corresponding
(approximately) to a conductance quantum (e2=h) per
channel, in spite of predictions [6,7,10,13,15] based on
the self-consistent Born approximation (SCBA) that
�min � �1=��e2=h for a MDF channel, and predictions
that localization occurs [14,16,17] when intervalley scat-
tering is significant; (ii) in gate-doped graphene � in-
creases linearly with the carrier density n away from the
charge neutrality (Dirac) point, implying a constant mo-
bility � � �=ne [21,22] and not the constant conductivity
usually predicted for the Boltzmann transport regime [13].
Although these surprises have inspired a number of theo-
retical studies [15–17], the source of the discrepancies
between experiment and theory has not yet been conclu-
sively identified.

We have recently pointed out that the linear dependence
of conductivity on carrier density in graphene can be
explained in the framework of Boltzmann transport theory
by assuming Coulomb scatterers [23] rather than the short-
range scatterers assumed, mainly as a practical simplifica-
tion, in most theoretical work. The golden-rule scattering
rate for Coulomb scatterers in a MDF model diverges in the
zero energy (Dirac point) limit, whereas it vanishes for
short-range scatterers. This property suggests the possibil-
ity of a qualitative difference between these two disorder
models. Since Boltzmann theory is not applicable in the
vicinity of the Dirac point, however, a fully quantum
mechanical approach is required to address the minimal
conductivity. In this Letter we report on a finite-size Kubo
formula analysis used to study the quantum transport of

MDFs. Over the range of system sizes that we can describe,
we find that �min is a few times larger for Coulomb
scatterers than for short-range scatterers and �e2=h.

A two-component MDF model describes graphene
transport only when intervalley scattering is unimportant.
We argue that the MDF model likely does apply at acces-
sible experimental temperatures to graphene systems near
the Dirac point, since the intervalley scattering length
obtained within the Born approximation diverges in that
limit. The temperature below which intervalley scattering
is important should increase away from the Dirac point
[24].

Massless Dirac-fermion model.—Graphene’s honey-
comb lattice has two atoms per unit cell on sites labeled
A and B. The low-energy band structure consists of Dirac
cones located at the two inequivalent Brillouin zone cor-
ners K and K0:

 HK � @v� � k � v@
0 kx � iky

kx � iky 0

� �
; (1)

and HK0 � @v�t � k, where v is the graphene Fermi ve-
locity and the Pauli matrices � act on the sublattice de-
grees of freedom. For each wave vector k, Eq. (1) has two
eigenstates jk;�i � �jk; Ai � ei�jk; Bi�=

���
2
p

, where � 	
tan�1�ky=kx�, and eigenenergies Ek;� � �@vjkj. When
intervalley scattering is neglected, the K and K0 valleys
contribute independently to the conductivity.

Boltzmann theory for doped graphene.—We start by
briefly reviewing Boltzmann transport theory applied to
graphene since this consideration motivates Coloumb scat-
terer models. The Boltzmann conductivity �0 � �e

2=h�

�2EF�0=@� � �e

2=h�2kF‘ is proportional to the transport
relaxation time �0. For short-range scatterers the Born
approximation gives @=�0 � 2� �V2�F � �niu

2=@v2�jEFj
[13], where V�r� � u

PNi
I ��r�RI� is the disorder poten-

tial, ni is the density of scatterers, and �F the density of
states at the Fermi level. When the range of the impurity
potential is much longer than the lattice spacing of gra-
phene, intervalley scattering is weak [13,14,16].

Note that �0 is independent of the carrier density n.
Experiment, on the other hand, finds that the mobility � �
�=ne in graphene is nearly constant except at very low
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densities. One plausible explanation for this behavior is
that Dirac-fermion scattering is dominated by Coulomb
scattering from ionized impurities near the graphene plane,
V�r� �

PNi
I e

2=�jr�RIj. Using Fermi’s golden rule and
approximating the screened Coulomb interaction by [23]
Usc�q� � �2�e2�=��q� 4	gkF� ’ �@v��=�2kF�, the
Boltzmann conductivity for Coulomb interactions is �c ’
�4e2=h��n=ni�32=�, proportional to density in agreement
with experiment. Here 	g � e2=�@v is the effective fine
structure constant used to characterize the ratio of
Coulomb interaction and band energy scales in graphene.
(	g ’ 3 in vacuum and ’ 1 when the graphene sheet is
placed on a SiO2 dielectric substrate.) Note that the
Boltzmann conductivity for Coulomb scatterers vanishes
as n! 0, contradicting experiment [21].

MDF model finite-size Kubo formula.—Our numerical
results, obtained by evaluating the finite-size Kubo formula

 � � �
i@e2

L2

X
n;n0

f�En� � f�En0 �
En � En0

hnjvxjn0ihn0jvxjni
En � En0 � i


; (2)

are summarized in Fig. 1. Here v � v� is the Dirac-
fermion velocity operator, f�E� is the Fermi-Dirac func-
tion, and jni denotes an eigenstate of the Dirac equation,

 ��i@v� � r � V�r�� � E ; (3)

which we solve using a large momentum-space cutoff �.
The disorder potential momentum-space matrix elements
are hk�jVjk0�0i � 1

L2

PNi
I�1 U�k� k0����0ei�k�k0��RI ,

where U�q� is constant for delta impurities and given by
Usc�q� for the screened Coulomb scattering case. The
scattering center locations RI and potential signs were
chosen at random. We estimate the bulk conductivity by
evaluating Eq. (2) at a large number of 
 values. The Kubo
conductivity � vanishes for both small and large 
, but
there is an intermediate region where the dependence of �
on 
 is relatively weak. We use the maximum of � vs 
 to
estimate the conductivity at a given system size L. For
metals, including doped graphene, physical arguments
suggest that 
� @=TL, where TL is the escape time from
the system studied numerically. It follows [25] that 
�
h�Ei � gT�E, where the Thouless energy h�Ei is the
geometric mean of the eigenvalue difference between pe-
riodic and antiperiodic boundary conditions, �E �
1=L2�F is the level spacing at the Fermi level, and gT 	
h�Ei=�E is the Thouless number.

The reliability of the finite-size Kubo formula method
described above is solidly established for diffusive metallic
systems [25]. For conventional nonrelativistic two-
dimensional electron systems with parabolic dispersion,
numerical conductivities calculated in this way agree
closely with the theoretical expectation of a Drude con-
ductivity �0 � �e2=h�kF‘ with a finite-size weak-
localization correction [26]. Subtleties, related to the 

dependence of the numerical estimate, do however arise
when this method is applied to insulators. The Dirac point
of the MDF model is an intermediate case and related
uncertainties apply to our numerical estimate of �min.
The property that the Dirac point density of states is finite
in the presence of disorder, as illustrated in the inset of
Fig. 1(a), may help validate the Kubo approach. We find
that the dependence of� on
 at the Dirac point, illustrated
in Fig. 1(c) is similar to that in a metal [25], indicating
delocalized states. � is a maximum when 
 corresponds to
��E at each system size as expected for �� e2=h. We
have also evaluated the Thouless conductivity as a consis-
tency check. A large number of numerical studies have
demonstrated that the Thouless conductivity estimate,
although perhaps not as accurate in the diffusive metal
limit (�
 e2=h), is more universally applicable. It may
be used for both delocalized and strongly localized states
[27], and should therefore be reliable at the Dirac point.

Figure 1 compares Kubo conductivity estimates for
(a) the short-range scatterer and (b) the screened
Coulomb scatterer cases. For the short-range disorder po-
tential case, the density dependence of the conductivity is
nonlinear, approaching the constant Boltzmann conductiv-
ity for jEFj 
 @=�. The estimated value of ��E � 0� is
close to the SCBA value �1=��e2=h predicted in earlier
theoretical studies [6,7,10,13,15]. For the screened
Coulomb scatterer case, on the other hand, the conduc-
tivity � increases linearly with increasing density jnj as
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FIG. 1 (color online). Dirac-fermion conductivities for (a) -
short-range scatterers and (b) screened Coulomb scatterers. The
inset of (a) compares the densities of states for short-range and
Coulomb cases. (c) Kubo formula conductivities at the Dirac
point as a function of 
 for Coulomb scatterers case. The inset of
(c) shows the size dependence of the conductivity for unscreened
Coulomb (open circles) and screened Coulomb (boxes) cases.
(d) Distribution function of the conductivity and resistivity
(inset) at the Dirac point for Coulomb scatterers. In the main
panel, the solid (blue) line is for L � 1:4Lmin and the dotted
(red) line is for L � 2Lmin, where Lmin is the minimum system
size considered.
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Boltzmann theory predicts. At the Dirac point, however,
the conductivity remains finite with the minimum value
’e2=h, which is few times larger than the SCBA value for
the short-range model. To illustrate the dependence on
carrier density, we have smoothed the curves in
Figs. 1(a) and 1(b) by averaging over the Fermi energy
interval containing typically 1–30 levels, and over bound-
ary conditions, in addition to over approximately 104 dis-
order realizations.

If we neglect intervalley scattering and account for
graphene’s spin and valley degeneracies, MDF properties
can be compared with graphene experimental results. Both
the linear dependence of the conductivity on density and
the shift of �min suggest that long-range scattering similar
to that produced by ionized impurities is present in experi-
mental samples. We note that ionized impurities in the
substrate or at sample edges that are separated from the
conduction channel by a distance that is large compared to
the graphene lattice constant but small compared to the
Fermi wavelength in the regime studied experimentally
(jnj & 7
 1012 �cm�2� [21,22]) will act like Coulomb
scatterers in the MDF model but will not produce strong
intervalley scattering.

The difference between Coulomb and short-range �min

values can be rationalized by the following argument. In
the short-range case, the golden rule relaxation time for
delta-function scatterers diverges (�0 / 1=jEFj ! 1) at
the Dirac point and kF‘ remains finite. In contrast,
Boltzmann transport theory suggests that the Dirac point
of the Coulomb scatterer model is in the strong disorder
limit because �c / jEFj ! 0. We examined this idea by
varying the carrier-density n and the ionized impurity
density ni independently, finding that the conductivity for
Coulomb scattering model appears to be a function of n=ni
only. Letting n! 0 at finite ni and letting ni ! 1 at finite
n are equivalent because �! �min. This finding is con-
sistent with the idea that at the Dirac point MDF Coulomb
scatterers are always in the strongly disordered limit. As
long as these states remain delocalized, however, the con-
ductivity cannot vanish; the nonzero conductivity at the
Dirac point is purely due to the quantum mechanical nature
of delocalized states. Although this argument is not quan-
titative, it makes it clear that there is an essential difference
between the Coulomb and short-range cases. A related
difference is also seen in the inset in Fig. 1(a) which
compares densities of states near the Dirac point (E � 0)
for short-range scatterers (green dashed line) and Coulomb
scatterers (blue solid line). The prominent dip at E � 0 in
the short-range case is replaced by a smooth minimum at a
larger value in the Coulomb case. One interpretation of the
increase in Dirac point density of states is that the carrier-
density fluctuates spatially in the smooth Coulomb poten-
tial. Nonzero local carrier densities at the Dirac point could
explain both the increase in density of states and the
increase in conductivity. For short-range scatterers, our
simulations have focused on the Boltzmann dominated
kF‘
 1 regime. We note that systems with kF‘� 1 or

smaller behave more like Coulomb scatterer systems at low
densities, and have larger minimum conductivities and
densities of states.

Although our theory does not account for electron-
electron interactions, the issue of screening effect near
the Dirac point requires comment. We use the T � 0
Thomas-Fermi approximation U�q� � 2�e2=��q�
�8�e2=���F� to give an indication of the importance of
screening, although this approximation must fail for EF !
0 since it applies strictly only for disorder potential range
much longer than the Fermi wavelength and kBT � EF.
The density of states at the Dirac point �F vanishes in the
clean limit whereas it can be evaluated self consistently in
the disordered case, leading to the small but finite value
seen in the inset in Fig. 1(a). The inset in Fig. 1(c) com-
pares the conductivity for unscreened and screened case at
several different system sizes. We find that the conductiv-
ities evaluated with screened interactions are suppressed
somewhat compared to the unscreened case. It appears
likely that the precise value of �min may depend indirectly
on electron-electron interactions.

We emphasize that we are able to evaluate the Kubo
formula only over a relatively small range of finite system
sizes. If we use the mobility to convert to physical length
units the minimum system size we study is �0:1 �m, not
much smaller than the size of the crystallites studied
experimentally [21]. Over the range of sizes we are able
to study the conductivity does increase very slowly with
system size, even at E � 0, as shown in the inset of
Fig. 1(c). This weak size dependence might be hinting
that the increasing conductivity predicted for two-
dimensional systems with symplectic symmetry [28] by
scaling arguments will emerge in the MDF model at ex-
tremely large system sizes even at E � 0. It is not obvious
to us that the scaling theory applies at the Dirac point for
either Coulomb or short-range scatterers since there is no
length scale on which �
 e2=h; the Fermi wavelength
diverges as E! 0, and then interference effects are hardly
imagined. Alternately, the weak size dependence we find
might be related to enhancement of carrier-density spatial
fluctuations, which can be imagined in terms of puddles of
electrons and holes, at larger system sizes in the long-range
disorder potential case. Since Dirac fermions are not
strongly localized, these puddles are not isolated but effec-
tively percolate [29] and are constrained by boundary
conditions in finite-size systems. The large length scale
limit of the conductivity at zero temperature is more ob-
vious for real graphene than for its MDF model, since
intervalley scattering will always become relevant and
lead to localization [14,16,17].

Finally, we comment on statistical properties of the
conductivity and the resistivity at the Dirac point.
Figure 1(d) shows the distribution function of the conduc-
tivity (main panel) and the resistivity (inset). The distribu-
tion function of � has a sharp peak near � � �1=��e2=h,
and a large tail on the large � regime. On the other hand,
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the resistivity distribution function has a broad peak near
h=e2, as seen in experiment [21].

Discussion.—We find that a MDF model with Coulomb
scatterers is able to account for two key findings of experi-
ments on graphene sheets, namely, that the conductivity is
proportional to the carrier density away from the Dirac
point and that the minimal conductivity per channel is
finite and larger than the SCBA value obtained theoreti-
cally for a MDF model with short-range scatterers. The
impurity density ni in the Coulomb model should be
associated with the density of ionized impurities that are
located in the substrate within a Fermi wavelength of the
graphene plane. In this interpretation, the mobilities mea-
sured in current samples [21,22] correspond to ni ’ 5

1011 �cm2�. The property that the conductivity is propor-
tional to carrier density in the Boltzmann regime suggests
dominant smooth intravalley scattering that could be
Coulomb in character. If so, intervalley scattering is likely
to be irrelevant in graphene in the Boltzmann transport
regime, although it will always be important at finite
carrier densities in the weak-localization regime when
the temperature is low enough that the phase coherence
length exceeds the intervalley scattering length, l0 /
1=jEFj. When intervalley scattering is weak, the MDF
model applies and momentum-space Berry phases change
constructive interference of back scattering particles into
destructive interference [14,30], implying weak antilocal-
ization. When local scatterers dominate in graphene inter-
valley and intravalley scattering rates [13,14,16] are
comparable and the accumulated Berry phases are random-
ized, so that all states are localized [12,19]. In a weak
magnetic field, the magnetic length limits the coherence
of carriers. One recent magnetoresistance study has shown
that highly doped graphene exhibits a negative magneto-
resistance indicating weak localization, while states re-
main delocalized in the vicinity of the Dirac point [24].
These properties further support the view that graphene is
described by a MDF model near the Dirac point. Our
numerical results suggest that the MDF conductivity is
finite and �e2=h at the Dirac point over the relevant range
of the system size and the coherence length. In the presence
of mesoscopic ripples in samples, the quantum corrections
have been argued to be strongly suppressed. These issues
come up with various interesting theoretical questions [24].
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Note added—After submitting the present Letter, we
became aware of partly related work [31].
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