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Nonautonomous Solitons in External Potentials
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Novel soliton solutions for the nonautonomous nonlinear Schrodinger equation models with linear and
harmonic oscillator potentials substantially extend the concept of classical solitons and generalize it to the
plethora of nonautonomous solitons that interact elastically and generally move with varying amplitudes,
speeds, and spectra adapted both to the external potentials and to the dispersion and nonlinearity
variations. The nonautonomous soliton concept can be applied to different physical systems, from
hydrodynamics and plasma physics to nonlinear optics and matter waves, and offer many opportunities

for further scientific studies.
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Zabusky and Kruskal introduced for the first time the
soliton concept to characterize nonlinear solitary waves
that do not disperse and preserve their identity during
propagation and after a collision [1]. The Greek ending
“on” is generally used to describe elementary particles,
and this word was introduced to emphasize the most re-
markable feature of these solitary waves. This means that
the energy can propagate in the localized form and that the
solitary waves emerge from the interaction completely
preserved in form and speed with only a phase shift.
Because of these defining features, the classical soliton is
being considered as the ideal natural data bit. The optical
soliton in fibers presents a beautiful example in which an
abstract mathematical concept has produced a large impact
on the real world of high technologies [2—4].

The classical soliton concept was developed for non-
linear and dispersive systems that have been autonomous;
namely, time has only played the role of the independent
variable and has not appeared explicitly in the nonlinear
evolution equation. A not uncommon situation is one in
which a system is subjected to some form of external time-
dependent force. Such situations could include repeated
stress testing of a soliton in nonuniform media with time-
dependent density gradients; these situations are typical
both for experiments with temporal or spatial optical sol-
itons, soliton lasers, and ultrafast soliton switches and logic
gates [2—4]. The formation of matter-wave solitons by
magnetically tuning the interatomic interaction near a
Feshbach resonance provides a good example of a non-
autonomous system [5,6].

Historically, the study of soliton propagation through
density gradients began with the pioneering work of
Tappert and Zabusky [7]. As early as in 1976 Chen and
Liu [8] substantially extended the concept of classical
solitons to the accelerated motion of a soliton in a linearly
inhomogeneous plasma. It was discovered that for the
nonlinear Schrodinger equation (NLSE) model with a
linear external potential the inverse scattering transform
method (IST) [9] can be generalized by allowing the time-
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varying eigenvalue (TVE), and as a consequence of this,
the solitons with time-varying velocities (but with time
invariant amplitudes) have been predicted [8]. At the
same time Calogero and Degasperis [10] introduced the
general class of soliton solutions for the nonautonomous
Korteweg—de Vries models with varying nonlinearity and
dispersion. More recently, different aspects of one-soliton
and multisoliton dynamics were investigated by Konotop
et al. [11] for the discrete NLSE models. The “ideal”
solitonlike interaction scenarios among nonautonomous
solitons have been studied in [12,13] for the generalized
NLSE models with varying dispersion, nonlinearity, and
dissipation or gain.

Behaving like a particle, a soliton may be accelerated
through a potential difference and reflected from the po-
tential boundaries, and consequently, two general ques-
tions naturally arise: What happens with a “‘classical”
soliton ‘‘beyond the autonomy” when the external poten-
tial is not only a function of coordinate but also a function
of time? Do solitons still exist and maintain their identities
through nonlinear interactions in time-dependent external
fields?

We show that in the framework of the generalized non-
autonomous NLSE model
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under the condition that dispersion D(t), nonlinearity R(z),
and confining harmonic potential satisfy the exact integra-
bility scenario
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the basic property of classical solitons, to interact elasti-
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cally, holds true, but the novel feature arises; namely, both
amplitudes and speeds of the solitons, and consequently
their spectra, during the propagation and after the interac-
tion are no longer the same as those prior to the interaction.
All nonautonomous solitons generally move with varying
amplitudes 7(r) and speeds () adapted to both the exter-
nal potentials and the dispersion D(¢) and nonlinearity R(r)
changes. Equation (1) is written here in standard soliton
units, as they are commonly known [2-6].

To show the exact integrability of Eq. (1) let us represent
it as the condition for compatibility of a pair of linear
differential equations:

F.-G. +[FGl=o. 3)

This equation must be valid for all values of complex TVE
A1) = k(1) + in(t) and is known as the generalization of
Lax pair [14] defining the set of the Dirac-type eigenvalue
equations for scattering potential Q(x, ?):

U= Folen, = Gl 1). (4)

Following the general strategy based on the IST-TVE
method of Chen and Liu [8] we have constructed the

desired matrices j—" and G:
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where for the sake of mathematical elegancy we made
the reduction ¢q(x, f) = \/R(t)/D(1)Q(x, t) exp[ix*O(r)/2]
with the self-induced soliton phase shift O(r) =
—WI[(R(1), D(t)]/D?*(t)/R(t) dependent on the Wronskian
WI(R(z), D(t)] = RD! — DR). It is straightforward to ver-
ify that the Lax Eq. (3) with matrices (5) and (6) provides
the nonautonomous model (1) under condition (2) and the
eigenvalue given by
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where we assumed, without loss of generality, that D(0) =
R(0) = 1.

Having obtained the eigenvalue equations for scattering
potential Eq. (4) and keeping in mind the variety of physi-
cal applications of the model in hand, we can write down
the general solutions for bright Q% (x,¢| o = +1) and
dark O (x, 7| o = —1) nonautonomous solitons:
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where K(7) = R(7)/D(7) [§a(7')D(7")/R(7")d7’ and pa-
rameter a designates the depth of modulation (the black-
ness) of gray soliton and its velocity against the
background. For optical applications, Eq. (10) can be
easily transformed into the Hasegawa and Tappert form

for dark soliton [2—4] under condition k, = n¢/(1 — a?).
Notice that the solutions considered here hold only when
the nonlinearity, dispersion, and confining harmonic po-
tential are related by Eq. (2), and both D(r) # 0 and R(z) #
0 for all times by definition.

Example 1. Chirped nonautonomous optical solitons
with moving spectra (colored solitons).—The transi-
tion to the problems of optical solitons is accomplished
by the substitution x— T (or x— X); t— Z and
Q" (x,t| o= +1)— U*(Z T(or X)) for bright solitons,
and [Q (x,t| o0 = —1)]" = U (Z, T(or X)) for dark sol-
itons, where the asterisk denotes the complex conjugate, Z
is the normalized distance, and T is the retarded time for
temporal solitons, while X is the transverse coordinate for
spatial solitons. Surprisingly, contrary to the well-studied
model with linear potential [8], there exists a more general
and exactly integrable nonautonomous model:
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Solitons with nontrivial self-induced phase shifts and vary-
ing amplitudes, speeds, and spectra for Eq. (12) are given
in quadratures by Eqs. (8)—(11) under condition Q2(Z) =
0. Hidden symmetry parameter 6, (initial linear phase
chirp) in Eq. (12) separates the newly discovered class of
solitons from the Chen and Liu model [8], where D(r) =
R(t)=1,a = ay = const,and o = +1, 8, = 0. It should
be emphasized that the accelerated solitons predicted by
Chen and Liu in plasma [8] were discovered in nonlinear
fiber optics only a decade later [15]. Let us show that the

074102-2



PRL 98, 074102 (2007)

PHYSICAL REVIEW LETTERS

week ending
16 FEBRUARY 2007

so-called Raman colored solitons can be approximated by
this equation. Self-induced Raman effect (also known as
the soliton self-frequency shift) is being described by an
additional term in the NLSE, namely, —orUd|U|?/0T [2—
4], where oy originates from the frequency dependent
Raman gain [2-4]. Assuming that soliton amplitude
does not vary significantly during self-scattering |U|> =
n?*sech?(nT), we obtain that azd|U|*> /0T = —20xn*T =
2a,T and, as follows from Eq. (7), dv/dZ = oxn*/2
where v = /2. The result of soliton perturbation theory
[2-4] gives dv/dZ = 8ogn*/15. This fact explains the
remarkable stability of colored Raman solitons that is
guaranteed by the property of the exact integrability of
the Chen and Liu model [8]. The more general model of
Eq. (12) and its exact soliton solutions open the possibility
of designing an effective soliton compressor, for example,
by drawing a fiber with R(Z) = 1 and D(Z) = exp(—6,2)
[16,17]. Tt seems very attractive to use the results of the
nonautonomous solitons concept in ultrashort photonic
applications and soliton lasers design [16,17]. Another
interesting feature of the novel solitons is associated with
the nontrivial dynamics of their spectra given by Eq. (7): if
dispersion and nonlinearity evolve in unison, D(¢) = R(r)
or D = R = 1, the solitons propagate with identical spec-
tra but with totally different time-space behavior. We dis-
play the main remarkable features of nonautonomous
colored solitons in Fig. 1.

(a)

0
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FIG. 1 (color online). Evolution of colored solitons and its
spectra calculated within the framework of the generalized
model given by Eq. (12) o =1 after choosing the soliton
management parameters (a) D(Z) = R(Z) = cos(3Z) and
(b) D(Z) = R(Z) = 1. In both cases, solitons propagate with
identical spectra (c) and a(Z) = 1 and Q?(Z) = 0. Input con-
ditions: g = 0.5 and «y = 5.0.

Example 2. Nonautonomous spatial solitons in graded-
index nonlinear waveguides.—Recently, Ponomarenko
and Agrawal [18] have discovered a wide class of spatial
solitonlike self-similar waves which can propagate in non-
linear graded-index amplifiers. They discovered the con-
tinuum radiation emitted by self-similar waves and non-
trivial dynamics of the solitary wave center. These features
do not exist for nonautonomous solitons, and the basic
property of nonautonomous solitons—to preserve their
identity during propagation and after a collision—holds
true. As follows from Egs. (1) and (2), the exactly inte-
grable model governing of spatial solitons propagation in
graded-index waveguide is reduced to

2
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Dispersion decreasing fibers (DDF) have found wide use in
optical solitons compression techniques [2—4,16,17]. The
integrability scenario Eq. (13) provides the repulsive para-
bolic potential V(Z, X) = o8°X?/(1 + BZ)/2 under the
condition that D(Z) = (1 + BZ)~!. We illustrate the main
features of these nonautonomous spatial solitons in Fig. 2.
When coherent (phase dependent) nonlinear short-range
forces among solitons dominate [19], two soliton bound
state can be formed despite the repulsive character of
parabolic potential Fig. 2(b).

-5 0 5 X

FIG. 2 (color online). Self-compression of spatial nonautono-
mous solitons and dynamics of their interaction calculated
within the framework of the model Eq. (13) after choosing the
soliton management parameters D(Z) = 1/(1+ BZ) for
(a) B =10.03 and (b) B = 0.01. Input conditions: two identical
soliton pulses Q(T — AT/2) and Q(T + AT/2) with equal am-
plitudes ny = 0.5 and speeds ky, = O initially separated in the
time domain by AT = 7.0.
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Example 3. Matter-wave solitons management con-
cept.—Equation (1) can be considered as the exactly inte-
grable model for harmonically trapped one-dimensional
(cigar-shaped [5,6]) Bose-Einstein condensate (BEC)
which, in particular, case D(f) = 1, can be reduced to

2 2
(14)

1
ot 2 9x?

with a plethora of nonautonomous soliton solutions given
by Egs. (8)—(11). A BEC is acted upon by gravity, like all
matter, and because of this, an additional linear potential
arises in Eq. (14). As follows from Eq. (14), variations of
magnetically tuned the interatomic interaction strength
R(r) must be consistent with variations of the confining
potential Q2(¢) = R(1)[R™'(¢)]/, [19]. That means that near
a Feshbach resonance when nonlinearity has a dispersive
form R(r) = R(0)/(1 — 1), bright and dark matter-wave
solitons can be stabilized even without a trapping potential
[20]. In the case of periodically varying interaction
strength among atoms, variations of confining harmonic
potential are bound to have sign reversal to support the
stable matter-wave solitons generation [20].

In conclusion, we have discovered and analytically de-
scribed a novel class of soliton solutions for the nonauton-
omous NLSE models with linear and harmonic oscillator
potentials, which substantially extend the concept of clas-
sical solitons and generalize it to the elastically interacting
nonautonomous solitons moving with varying amplitudes,
speeds, and spectra and adapted to both the external po-
tentials and the dispersion and nonlinearity variations. We
stress that these solitons represent exact, nonperturbative
solutions for nonlinear evolution Eq. (1), and they are
drastically different from the well-known results of soliton
perturbation theory. Their remarkable properties have been
proven in our computer simulations with the accuracy as
high as 107°.
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