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Gravitomagnetism—a motional coupling of matter analogous to the Lorentz force in electromagne-
tism—has observable consequences for any scenario involving differing mass currents. Examples include
gyroscopes located near a rotating massive body and the interaction of two orbiting bodies. In the former
case, the resulting precession of the gyroscope is often called ‘‘frame dragging’’ and is the principal
measurement sought by the Gravity Probe-B experiment. The latter case is realized in the Earth-Moon
system, and the effect has in fact been confirmed via lunar laser ranging to approximately 0.1%
accuracy—better than the anticipated accuracy of the Gravity-Probe-B result. This Letter shows the
connection between these seemingly disparate phenomena by employing the same gravitomagnetic term
in the equation of motion to obtain both gyroscopic precession and modification of the lunar orbit.
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Part of the post-Newtonian gravitational interaction be-
tween two mass elements, when both are in motion, has
been called ‘‘gravitomagnetism,’’ in analogy with the mag-
netic force between moving charges. The gravitomagnetic
interaction is part of the more general 1=c2-order motional
corrections to Newtonian gravity that result from field
theories such as Einstein’s general relativity and scalar-
tensor generalizations [1,2]. A total package of velocity-
dependent corrections is required so that the gravitational
equation of motion remains consistent when expressed in
different asymptotic inertial reference frames. If Lorentz
invariance of local gravitational physics is imposed by
empirical constraint, the package of motional corrections
is additionally limited in structure.

The gravitomagnetic interaction of general relativity
was first studied by Lense and Thirring in 1918, and it
was shown to produce both accelerations of and torques on
two neighboring rotating bodies. Others, viewing this phe-
nomenon geometrically, have coined the interpretive name
‘‘inertial frame dragging’’ from rotating matter. It has also
been shown that the gravitomagnetic interaction plays a
part both in shaping the lunar orbit at a level (part in a
thousand) readily observable by laser ranging [3] and in
contributing to the periastron precession of binary and
especially double pulsars [4].

For applications to the analysis of gravitational phe-
nomena, a general metric tensor field expansion for the
gravitational potentials in a broad class of theories was
developed by Will and Nordtvedt [5,6]. This parametrized
post-Newtonian (PPN) framework yields a gravitomag-
netic contribution to the equation of motion, which in the
Lorentz-invariant case is

 a i � �2� 2��
X
j

�j

c2r3
ij

vi � �vj � rij�; (1)

where vi and vj are the velocities of bodies i and j in the
chosen asymptotic inertial coordinate system [3]. The vec-
tor rij when combined with the fraction �j=r3

ij constitutes
the Newtonian gravitational acceleration of mass i toward
mass j. In geometric language, the PPN factor � quantifies
the amount of space curvature produced per unit mass. In
general relativity, � � 1. Metric theories allowing pre-
ferred inertial frame effects (absence of local Lorentz
invariance) add the parameter �1=4 to the �2� 2�� pre-
factor in Eq. (1), but lunar laser ranging as well as other
solar system observations constrain �1 to be less than 10�4

[7]. The conclusions of this Letter are not dependent on our
choice to work in the PPN framework [8].

We can ask what effect the gravitomagnetic term of
Eq. (1) has on a gyroscope outside of a rotating spherical
mass. We define the gravitomagnetic field by

 G ij � �2� 2��
X
j

�j

c2r3
ij

�vj � rij�; (2)

so that ai � vi �Gij in analogy to the electromagnetic
Lorentz force. Considering a small gyroscope, the Gij
vector field is calculated at the gyroscope center and will
be nearly constant across its body. To obtain the cumulative
effect of mass elements moving within a body rotating at
angular velocity �, the gravitomagnetic field is integrated
over all mass elements j, each with d�j � G��rj�d3rj,
where G is Newton’s gravitational constant, and ��rj� is
the mass density at radius rj from the body center.
Adopting a spherical coordinate system aligned with the
rotation axis of the body, we describe the Cartesian vec-
tor rj � r sin� cos�i� r sin� sin�j� r cos�k, and the
vector to the gyroscope (placed in the � � 0 plane) is
ri � a sin i� a cos k, so that r2

ij � a2 � r2 �

2ar�sin sin� cos�� cos cos��. The velocity of mass
element j is vj � �r sin��� sin�i� cos�j�, so that
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dGij � �2� 2��
�r sin�d�j

c2r3
ij

f�r cos�� a cos �

� �cos�i� sin�j� � �a sin cos�� r sin��kg:

(3)

For the special case of a gyroscope situated over the pole
for simplified integration ( � 0�, and recognizing that the
k component of the Gij vector will be the only one to yield
a nonzero angular integral, we find that
 

Gij� �0���
�2�2��G�k

c2

�
Z 2�

0
d�

Z 1

�1
du
Z R

0
dr

��r�r4�1�u2�

�a2�r2�2aru�3=2

��
8��2�2��G�k

3c2a3

Z R

0
dr��r�r4: (4)

Here we used the identity u � cos� and note that the
integral over u eliminates the r dependence in the denomi-
nator. Recognizing that the moment of inertia of a spherical
body is

 I �
8�
3

Z R

0
��r�r4dr; (5)

we see that

 G ij� � 0� � �
�2� 2��GIs�

c2a3 k; (6)

where the s subscript represents the massive rotating body.
Orienting the gyroscope so that its spin axis is along

the i direction, ! � !i, the velocity of an element
within the gyroscope is vi � !� ri � �!r cos�j�
!r sin� sin�k, where ri is the vector position of a mass
element within the gyroscope with respect to its center.
Now all pieces are at hand to evaluate the acceleration of
each mass element within the gyroscope due to the grav-
itomagnetic term. The force on each element is dFi �
dmiai � dmivi �Gij, and the torque on the gyroscope
from this element is then d� � ri � dFi. Combining these
steps,

 d� �
�2� 2��GIs�!r2 cos�dmi

c2a3 �cos�j� sin� sin�k�:

(7)

Integrating this torque over the volume of the gyroscope,
the k component integrates to zero in the � integral,
yielding
 

� �
�2� 2��GIs�!

c2a3 j
Z 2�

0
d�

Z 1

�1
u2du

Z R

0
��r�r4dr

�
�1� ��GIs�Ig!

c2a3 j; (8)

where the integral is seen to be one-half the rotational
inertia of the gyroscope, which is denoted with a

subscript g. This torque will change the angular momen-
tum vector of the gyroscope Lg � Ig!, such that the angle
of the axis � precesses at a rate of _� � j�j=jLgj, so that

 

_� �
�1� ��GIs�

c2a3 : (9)

The direction of precession indicated by Eq. (8) is one
that takes the angular momentum—originally, in the i
direction only—toward the j direction, meaning that the
precession has the same sense as the rotation of the massive
body. Had we developed an expression for Gij� �

�
2� at

the equator of the rotating body, we would have found half
the magnitude of the polar case and in the opposite direc-
tion. In general, the field

 G ij � �
�1� ��GIs�

c2a3 �3�k 	 r̂�r̂� k
; (10)

where r̂ is the unit radial vector. In a circular polar orbit
with uniform angular rate in  , the gravitomagnetic field
averages to

 hGiji � �
�1� ��GIs�

2c2a3 k; (11)

so that the net field shares the same direction as that over
the pole, and therefore the net precession will be in the
same sense as the rotating mass, but at one-fourth the polar
rate. Summarizing,

 

_� polar orbit �
�1� ��GIs�

4c2a3 : (12)

Putting this in another form, where we reduce the rotational
inertia to Is � fMsR2, where f � 0:33 for the Earth [9],
we have the more convenient form:

 

_� polar orbit �
�1� ��f

4

GMs

Rc2

�
R
a

�
3
�: (13)

For Gravity Probe-B (GP-B), in a 640 km altitude polar
orbit, Eq. (13) yields 0.042 arcseconds per year, matching
the mission expectation [10,11]. GP-B anticipates measur-
ing this precession to<1% accuracy and perhaps as well as
0.1%–0.3%. Note that the gyroscope spin was not treated
as an intrinsic property in deriving the gyroscope preces-
sion. Rather, the effect results from the integrated mass
currents of mass elements in rotational motion.

In obtaining the effect of the gravitomagnetic term
[Eq. (1)] on the lunar orbit relative to Earth, we treat the
gravitomagnetic acceleration as a perturbation about an
otherwise circular orbit. We start with an orbit obeying
the two-body equation of motion:

 �r � �
GM

r2 � r!
2 � a�r� �

l2

r3 ; (14)

where a�r� is the central acceleration, and l � r2! is the
(specific) angular momentum. We idealize the unperturbed
orbit to have zero eccentricity and zero inclination, so that
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the end result is accurate for the Moon at the 10% level or
better. The deviation �r, resulting from a periodic accel-
eration perturbation ~�a, then obeys

 

��r�!2
0�r � �ar � 2!0

Z t
�a	dt

0; (15)

where !0 is the natural frequency for orbital perturbations,
with !2

0 � 3!2 � da
dr � !2. The acceleration ~�a has been

decomposed into radial and tangential components, and t0

is a time variable.
Expressing the triple cross-product in Eq. (1) as the

equivalent dot-product relationship, we find that the grav-
itomagnetic acceleration of the Moon is

 a m � ~�a �
�e�2� 2��

c2a2 �r̂�vm 	 ve� � ve�vm 	 r̂�
; (16)

where r̂ is the unit vector from the Earth to the Moon, and a
is the Earth-Moon distance. Equation (16) is rewritten as

 

~�a �
�2� 2��GM

c2a2 �r̂�V2 � V 	 u� � V�V 	 r̂� u 	 r̂�
;

(17)

with the Earth’s velocity around the Sun being V and the
Moon’s velocity being V � u, where u is approximately
30 times smaller than V in magnitude.

Note that u represents to sufficient accuracy the geocen-
trically viewed orbital velocity of the Moon around the
Earth. Thus, under the assumption of a circular orbit (about
which we examine the perturbation), u 	 r̂ � 0. Likewise,
if we define �̂ to be the tangential orbit vector at the Moon
that is perpendicular to r̂, u 	 �̂ � u. Under the assumption
that the Earth is in a circular orbit about the Sun, the
relationship between V (perpendicular to Earth-Sun line)
and r̂ and �̂ picks out the synodic phase angle of the Moon,
D. Specifically, V 	 r̂ � �V sinD and V 	 �̂ � �V cosD.
Similarly, V 	 u � �Vu cosD. Leaving off the prefactor
from Eq. (17) for now, and dealing only with the vector
math, the radial component is

 �ar / V2 � Vu cosD� ��V sinD�2

� 1
2V

2 � 1
2V

2 cos2D� Vu cosD; (18)

and the tangential component is

 �a	 / ���V cosD���V sinD� � �1
2V

2 sin2D: (19)

The periodic accelerations consist of two categories: V2

terms that have 2D angular dependence and Vu terms that
have D angular dependence. We can treat each separately
in solving Eq. (15). There is also a constant term in the
expression for �ar. We can ignore the constant term since
it acts only to rescale the orbit in a nonperiodic way. We
will deal first with the 2D terms, then look at the D terms.

First, we integrate the �a	 term. Noting that the rate at
which D advances is _D � !��, the difference between
the lunar orbital frequency and the Earth’s orbital fre-

quency, we can construct an arbitrary 2D argument as
�2�!���t0 ��
, where � is an arbitrary phase depend-
ing on the choice of t0 � 0. The integral (without the
numerical prefactor) is then

 2!
Z t

sin�2�!���t0 ��
dt0 ��
!

!��
cos2D�const:

(20)

We have consolidated any initial phase in the integration
constant, effectively defining t so that D � �!���t. As
above, we can ignore the constant term in our periodic
analysis. The differential equation becomes
 

��r�!2�r �
�1� ��GM

a2c2 V2

�
cos2D�

!
!��

cos2D
�

�
�1� ��GM

a2

V2

c2

2!��

!��
cos2D: (21)

The solution, in meters, is then

 �r � ��1� ��
V2

c2

2� 

1� 


a
3� 8


cos2D

� �6:5 cos2D m; (22)

where we have made use of Kepler’s relation (!2a3 �
GM) and define 
 � �=!, ignoring terms to second order
in 
.

The term proportional to Vu has no tangential part, so
we immediately write the differential equation as

 

��r�!2�r � �
�2� 2��GM

c2a2 Vu cosD; (23)

for which the solution is

 �r � �
�2� 2��GM

c2a2

Vu

!2 � �!���2
cosD

� ��1� ��
Vu

c2

!
�
a cosD � �3:4 cosD m: (24)

But a feedback process produced by the interaction of
synodic perturbations and the cos2D solar tidal distortion
of the lunar orbit results in an amplification of cosD terms
by the factor [12]

 Qres �
1� 2

1� 7


� 1:79; (25)

so that the corrected range oscillation is

 �r � ��1� ��
Vu

c2

!
�

1� 2

1� 7


a cosD � �6:1 cosD m:

(26)

In summary, the gravitomagnetic perturbations of the
lunar orbit are
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�r2D � �6:5 cos2D meters;

�rD � �6:1 cosD meters:
(27)

Lunar laser ranging (LLR) has been used for decades to
provide a number of the most precise tests of general
relativity, including tests of the weak and strong equiva-
lence principles, the time rate of change of Newton’s
gravitational constant G, and geodetic precession, among
others [13]. Equivalence principle violations would pro-
duce a cosD signal [14], though no cos2D signal. Current
fits to the archive of LLR data limit any net deviation of the
cosD term in the lunar orbit to less than �4 mm from the
orbit prescribed by general relativity [13]. Likewise, the
cos2D term is constrained at roughly the 8 mm level. Thus,
barring a chance simultaneous violation of the equivalence
principle and gravitomagnetism, the 4 mm constraint
translates to a check on the �6 m gravitomagnetism am-
plitude to better than 0.1% accuracy. Allowing for such a
conspiracy, we must use the 8 mm cos2D constraint (which
is not influenced by equivalence principle violation) to
establish a �0:15% verification of the gravitomagnetic
phenomenon. At this time, LLR provides the most precise
test of this phenomenon—far better than the laser geo-
dynamics satellites tests of the Lense-Thirring effect [15]
and tests from binary pulsars [4]. This result is also likely
better than the ultimate result from the GP-B experiment
[10].

A new effort in LLR is poised to deliver order-of-
magnitude improvements in range precision [16], which
will translate into tighter constraints on the cosD and
cos2D amplitudes in the lunar orbit. Because these are
periodic effects, their accurate determination requires
only about a year of new data collection. Thus, a signifi-
cantly improved test of this phenomenon is not far away.

Whether the mass elements in a body are moving com-
monly—as for the Earth and the Moon in orbital motion in
the solar system—or as mass currents in the rotational
manner of the spinning Earth and the gyroscope in GP-B,
the total interaction between bodies must be dominated by
a linear-order integration over the bodies’ mass elements in
both situations. Breaking weak-field superposition would
be a radical and ultimately nonviable modification to grav-
ity theory. If this linear-order gravitomagnetic interaction
from PPN metric gravity [Eq. (1)] is altered in order to fit
any anomalous GP-B observation, then either the cosD or
cos2D amplitudes, or both, in the Earth-Moon range as
measured by LLR to half-centimeter accuracy will show
anomalies under this new modeling—establishing a pro-
found empirical clash. An added likely consequence of
modifying gravitomagnetism would be destroying the total
fit to the binary pulsar 1913�16 data, which includes a
better than 1% match to general relativity’s predicted
gravitational radiation-reaction accelerations in that sys-

tem. Existing and robust observations already encumber
the gravitomagnetic interaction.

The authors acknowledge useful discussions with Eric
Michelsen and Clifford Will. The work of S. G. T. was
carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

*Electronic address: tmurphy@physics.ucsd.edu
[1] B. Mashhoon, gr-qc/0311030.
[2] R. F. O’Connel, Classical Quantum Gravity 22, 3815

(2005).
[3] K. Nordtvedt, gr-qc/0301024.
[4] K. Nordtvedt, Int. J. Theor. Phys. 27, 1395 (1988).
[5] C. M. Will and K. Nordtvedt, Astrophys. J. 177, 757

(1972).
[6] C. M. Will, Theory and Experiment in Gravitational

Physics (Cambridge University Press, New York, 1993).
[7] J. Müller, K. Nordtvedt, and D. Vokrouhlicky, Phys.

Rev. D 54, R5927 (1996).
[8] Although the present analysis uses the equation of motion

from the PPN formulation of long range, metric gravity,
the conclusions we draw are not constrained by this
choice. The phenomenology we explore—the vi � �vj �
gij� acceleration of Eq. (1)—generically results from
modified metric field expansions or even nonmetric mod-
els of gravity at the 1=c2 post-Newtonian level. If such an
interaction is used to explain precessional effects in a
gyroscope experiment, then it will also be present to
perturb the lunar orbit and binary pulsar orbits, regardless
of its parametrized strength in any particular model. Any
attempt to suppress the gravitomagnetic influence on the
lunar orbit relative to that on a low-orbiting gyroscope by
a Yukawa-like modification to gij—whether metric or
nonmetric—would clash with strong constraints on the
inverse-square nature of gij determined via satellite and
lunar laser ranging. Equation (1) is, of course, dependent
on the asymptotic inertial frame in which analysis is
performed, just as are magnetic forces within an electro-
magnetic system. Consistent formalisms can be used in
any choice of frame to calculate observables; this permits
using the convenient solar system barycentric frame for
our analysis.

[9] F. D. Stacey, Physics of the Earth (Wiley, New York,
1977), 2nd ed., p. 55.

[10] S. Buchman et al., Adv. Space Res. 25, 1177 (2000).
[11] C. M. Will, Phys. Rev. D 67, 062003 (2003).
[12] K. Nordtvedt, Icarus 114, 51 (1995).
[13] J. G. Williams, S. G. Turyshev, and D. H. Boggs, Phys.

Rev. Lett. 93, 261101 (2004).
[14] K. Nordvedt, Phys. Rev. 170, 1186 (1968).
[15] I. Ciufolini, E. C. Pavlis, and R. Peron, New Astron. Rev.

11, 527 (2006).
[16] http://physics.ucsd.edu/~tmurphy/apollo/.

PRL 98, 071102 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
16 FEBRUARY 2007

071102-4


