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Amnestically Induced Persistence in Random Walks
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We study how the Hurst exponent o depends on the fraction f of the total time ¢ remembered by non-
Markovian random walkers that recall only the distant past. We find that otherwise nonpersistent random
walkers switch to persistent behavior when inflicted with significant memory loss. Such memory losses
induce the probability density function of the walker’s position to undergo a transition from Gaussian to
non-Gaussian. We interpret these findings of persistence in terms of a breakdown of self-regulation
mechanisms and discuss their possible relevance to some of the burdensome behavioral and psychological
symptoms of Alzheimer’s disease and other dementias.

DOI: 10.1103/PhysRevLett.98.070603

A classic problem in physics concerns normal versus
anomalous diffusion [1-4]. Fractal analysis [5,6] of ran-
dom walks [1-4] with memory aims at quantitatively
describing the complex phenomenology observed in eco-
nomic [1,7], sociological [8], ecological [9-11], biological
[2,12], physiological [2,13] and physical [2-4,6,14] sys-
tems. Markov processes exhaustively account for ran-
dom walks with short-range memory. In contrast, long-
range memory typically gives rise to non-Markovian walks
[2,6,7,15—18]. The most extreme case of a non-Markovian
random walk corresponds to a stochastic process with
dependence on the entire history of the system. With the
aim of capturing the essential dynamics of memory loss in
complex systems, we investigate an idealized model for the
limiting case of unbounded memory random walks with
dependence on the complete [15] or partial [16] history of a
binary decision process. Persistent random walkers tend to
repeat past behavior; hence, a plausible assumption holds
that loss of memory of the past cannot cause persistence
but rather can only diminish it. Moreover, all Markovian
and most non-Markovian random walk models that attempt
to account for persistent behavior inevitably assume a
memory of the recent past, with memory loss limited to
the distant past. Aiming to question such assumptions, we
show here that loss of memory of the recent rather than of
the distant past can actually induce persistence.

An important global property of random walks, the
Hurst exponent « [17], relates to how persistently the
walkers diffuse. For the case of zero drift velocity, the
Hurst exponent quantifies how the mean squared displace-
ment scales with time t:

(x%) ~ 122, (1)

The dynamics of the random walker can range from sub-
diffusion (« < 1/2), through normal diffusion (o = 1/2),
to superdiffusion (a > 1/2), the latter characterized by
persistence (i.e., long-range correlations) in the random
walk. Persistent random walkers on average repeat past
behavior.
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We first describe the case without memory loss [15,16].
The random walk starts at the origin at time 7, = 0 and
retains memory of its complete history. At each time step
the random walker moves either one step to the right or
left: x,.1 = x, + v,41, where the velocity v, = *1 rep-
resents a stochastic noise with two-point autocorrelations
(i.e., memory). The walker can remember the entire history
of prior random walk step directions {v,} for ¢ = 7. At
time ¢, we randomly choose a previous time 1 < ¢ < ¢ with
equal a priori probabilities. We then choose the current
step direction v, based on the value of v, in the following
manner:

v, — { +v, with probability p, )

—v,  with probability 1 — p.

Without loss of generality we assume that the first step
always goes to the right, i.e., v = +1. The position at
time ¢ thus follows x, = >, _, vy.

The advantage of this choice of non-Markovian random
walk model stems from its known exact analytical solution
[15]. The probability density function (PDF) evolves ac-
cording to a Gaussian propagator with a diffusion constant
that depends on time ¢ and p:
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Asymptotically, the model presents nonpersistent behavior
(a = 1/2) for p<3/4 and a persistence regime (a =
2p — 1) for p > 3/4 (with marginal persistence for p =
3/4)[15,16]. The mean displacement scales as (x) ~ 12~ !,
decaying algebraically for p < 1/2 and diverging algebrai-
cally for p > 1/2. For 1/2 < p < 3/4, the mean square
displacement remains larger than the square of the mean,
such that the behavior remains diffusive, i.e., nonpersistent.
Besides the classification of the second moment behavior
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in terms of nonpersistent (i.e., normal) versus persistent
(i.e., anomalous) diffusion (defined by the transition at p =
3/4), the first moment scaling allows the classification of
the random walkers as either “reformers” (p < 1/2) that
attempt to compensate for the past behavior, or as “tradi-
tionalists” (p > 1/2) that tend to repeat the past. Crucially,
reformers (p < 1/2) never show persistence (a > 1/2).
We next modify the model in order to introduce loss of
memory of the recent past.

Consider a random walker that can remember only the
initial fraction ft of the total ¢ time steps. If f = 1, then we
recover the full memory model, but for f < 1, the walker,
while remaining non-Markovian, nevertheless does not
remember the complete history. We study how (x?) scales
with ¢, as a function of p and f. Figure 1 shows how the
scaling exponent « of the mean square displacement varies
as we reduce the range of the memory. As f — 0 we obtain
an unexpected result: even reformers (p < 1/2) that tend to
compensate for past behavior become persistent (o >
1/2). The loss of memory of the recent past thus appears
to cause persistence for values of p for which the full
memory model precludes persistence. In contrast, for loss
of recall of the distant rather than recent past, the persis-
tence can only decrease [16].
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FIG. 1 (color online). Persistence of the random walk, repre-
sented by the Hurst exponent « as a function of the correlation
parameter p and the fraction f of the total time remembered by
non-Markovian walkers that forget the most recent (1 — f)f time
steps, measured over 10? realizations. The dashed line shows the
known analytic result [15,16] for the case f = 1. The inset
shows the typical plots of (x?) for chosen values of p and f
from which we estimated the «. We find that whereas values p <
1/2 always preclude persistent behavior in the f = 1 case, yet
persistence arises for sufficiently small f even for p < 1/2. Note
how the f = 0.2 and f = 0.1 curves deviate away from @ = 0.5
as p — (0. We find that this persistence emerges as a result of log-
periodic oscillations (e.g., see the f = p = 0.1 case in the inset)
in the velocity, such that it changes sign increasingly infre-
quently. Note also that loss of recent memories increases persis-
tence for the entire range of p # 1/2.

How can loss of memory lead to persistence? Note that
for small f and p < 1/2, the random walker attempts to
move opposite to the average direction chosen in the first
ft time steps. It takes #(1 — f)/f additional time steps for
the effect of the action taken at the present time 7 to enter
into the range of the accessible memory. Therefore con-
siderable time elapses between inversions of the time
averaged velocity. The behavior thus becomes persistent,
because the mean position oscillates with ever greater
amplitude as t— oo, due to the increasingly infrequent
velocity inversions. We have found evidence of log-
periodic oscillations, indicating that discrete scale invari-
ance, characterized by complex rather than real scaling
exponents, plays a role [18]. Figure 2 shows clear evidence
of the existence of these log-periodic oscillations. The
amplitude of these oscillations becomes larger for small
f, whereas for sufficiently large f they effectively disap-
pear. In the future, we expect to obtain the complete phase
diagram separating the persistent and nonpersistent phases
as a function of p and f.

We also study a more dramatic loss of memory—the
random walkers’ equivalent of anterograde amnesia: no
new long-term memories can form after a simulated “ac-
cident”” or “injury’” at time ¢,. In this case, we find ballistic
(a = 1) behavior, with no velocity inversions (or log-
periodic oscillations) for any value p # 1/2.

We next report evidence that this amnestically induced
persistence for p < 1/2 is associated with a transition from
a Gaussian PDF of the position for f =1 to a non-
Gaussian PDF for f <1 (Fig. 3). The insets of Fig. 3
show normal probability plots [19] of the position. On
the vertical axis we plot the ordered data, and on the
horizontal axis we plot the normal order statistic medians
for the normal (i.e., Gaussian) distribution. Departures
from a linear plot indicate departures from Gaussian sta-
tistics. We obtain a good fit with a Gaussian distribution for
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FIG. 2. Semilog plot of displacement x, as a function of ¢ for
p =0.1 and various f. The inset shows x,/r'/2 versus time.
Significant memory loss (i.e., small f) leads to larger amplitudes
for the log-periodic oscillations.
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FIG. 3. Histogram showing the normalized probability density
function (PDF) of the position of walkers with p = 0.1 after a
long time t,,, = 1638400, for (a) f = 0.8 (nonpersistent re-
gime) and (b) f = 0.1 (amnestically induced persistence). We
have simulated 10° realizations. Notice the Gaussian PDF for
large f, as expected from the known properties of the f =1
case. In contrast, the PDF becomes non-Gaussian for low f and
low p, when memory loss induces persistence. Indeed, the
aforementioned log-periodic velocity inversions (see text) allow
a violation of the necessary conditions for the central limit
theorem to hold, thus preventing the convergence to a
Gaussian PDF. The insets show normal probability plots of the
position x versus the normal order statistic medians m: the linear
plot in (a) indicates Gaussian (i.e., normal) behavior, whereas the
nonlinearity in (b) indicates a non-Gaussian PDF. The loss of
recent memories leads to a remarkable change from Gaussian to
non-Gaussian behavior—and consequently to persistence.

large f but not for small f. One would not typically expect
this result, since only Gaussian PDFs have appeared in
similar models [15,16]. By changing the parameter f, the
behavior undergoes a remarkable qualitative change, from
Gaussian to non-Gaussian.

These numerical results are consistent with the known
analytical solutions for f =1 [15] and for the case of
random walkers with anterograde amnesia, which leads
to a ballistic solution with constant velocity for p # 1/2.
Analytic solutions for 0 < f <1 may require solving re-
currence relations in which the moments (x¢) at time ¢ + 1

depend not only on their values at a previous time ¢ but also
on the values at a time ft in the more distant past. The full
analytical solution for « as a function of f and p remains
an open problem. In this context, we have found prelimi-
nary evidence that the recurrence relations allow power
law and log-periodic solutions in the first moment (x,).

We also discuss the expected behavior for d-dimensional
generalizations for f << 1. For the case of separate memo-
ries for each space direction, we expect the dimensionality
not to play a major role on how a depends on f. The
velocities now become d-dimensional vectors, as do the
displacements. But the velocities along a given dimen-
sion do not affect the position along a distinct dimension,
thereby effectively decoupling the dimensions, in accor-
dance with the known analytical result for the f = 1 model
[15].

We briefly comment on the above results, in the context
of complex systems that have learning or self-regulating
mechanisms [20] that preempt repetitive dynamics. By
incorporating some form of negative feedback, many com-
plex adaptive systems avoid persistent or repetitive behav-
ior. For the full memory model (f = 1), negative feedback
occurs for p < 1/2, so persistence cannot arise. However,
for f <1 the velocity inversions provoked by the negative
feedback happen ever more infrequently for the reasons
explained earlier, with important consequences for self-
regulation. Essentially, negative feedback breaks down
with the loss of recent recall, thus allowing persistence.
Our results suggest the possibility of a new quantitative
description of the phenomenology of memory loss and may
achieve a closer connection with realistic applications.
Specifically, we note (i) the possibility of quantifying the
extent of memory damage in diverse (e.g., neurophysio-
logical) non-Markovian systems via 1 — f and (ii) the
known relationship between « and pathology [2,13] for a
number of health conditions.

We do not find it inconceivable that persistence and
repetition in diverse self-regulating complex systems may
emerge whenever memories of recent events degrade pref-
erentially to those of the distant past. Consider, for ex-
ample, the role of memory in health and disease [21-23]. A
frequent and burdensome behavioral and psychological
symptom of Alzheimer’s disease and other dementias in-
volves persistent and repetitive behavior [23]. Patients may
hum a tune that never seems to run out of verses, pose the
same question dozens of times a day, or pace the same
stretch of floor for hours. They may also continuously
repeat words or phrases (i.e., echolalia). Most importantly
in the context of our findings, patients that suffer from
persistent and continual repetition of questions (e.g., the
inability to remember directions) often show clear evi-
dence of loss of recent memory and immediate recall
[23]. Memory loss frequently manifests itself in early
stages of the disease, while repetitive actions are less
common in early dementia but increase in frequency in
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patients with definite diagnoses of dementia [24,25]. While
memory impairment can clearly account for repetitive
questioning, its role in other repetitive actions (either as a
cause or as a correlate) has remained unclear thus far [23].
In view of these facts and our reported findings, we find it
plausible that recent memory loss may bear a causal rela-
tionship with the repetitive behaviors seen in Alzheimer’s
disease, in which memories of the distant past fade last.

In summary, we have discovered a new mechanism
underlying trend-reinforcing dynamics: amnestic induc-
tion of persistence. We have shown that loss of memory
of the recent past can cause persistence in otherwise non-
persistent non-Markovian random walkers. Whereas the
loss of distant memories decreases persistence [16], our
results indicate that the loss of recent memories actually
increases persistence, allowing deviations from Gaussian
statistics.
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