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A nuclear spin can act as a quantum switch that turns on or off ultracold collisions between atoms even
when there is neither interaction between nuclear spins nor between the nuclear and electron spins. This
‘‘exchange blockade’’ is a new mechanism for implementing quantum logic gates that arises from the
symmetry of composite identical particles, rather than direct coupling between qubits. We study the
implementation of the entangling

������������
SWAP
p

gate based on this mechanism for a model system of two atoms,
each with ground electronic configuration 1S0, spin 1=2 nuclei, and trapped in optical tweezers. We
evaluate a proof-of-principle protocol based on adiabatic evolution of a one-dimensional double Gaussian
well, calculating fidelities of operation as a function of interaction strength, gate time, and temperature.
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Implementations of quantum processors require coher-
ent quantum logic gates that induce entangling operations
between qubits [1]. In most cases, the same physical effect
that gives rise to coherent couplings in the logical basis
states leads to decoherence between them. For example, in
an ion trap, the strong Coulomb interaction provides the
quantum bus for two-qubit logic [2], but charged ions can
be heated by fluctuating patch potentials in trap electrodes
[3]. In the neutral atom platform, strong spin dependent
collisions can lead to an entangling gate [4–6] but also to
spin relaxation [7].

In this Letter, we propose a new scheme for quantum
logic based on an ‘‘exchange blockade’’ arising solely
from the symmetry of identical composite particles rather
than from differential coupling strengths. We consider a
hybrid approach based on NMR and ultracold collisions of
trapped neutral atoms. Elements with two valence elec-
trons in a closed shell configuration 1S0, such as those in
group II, possess no electron spin and thus no hyperfine
interaction with nuclear spin when in the electronic ground
state. Nuclear spin, nonetheless, strongly affects the inter-
action between these atoms solely due to quantum statis-
tics. In a fermionic species, the dominant ultracold s-wave
collisions are forbidden by the Pauli exclusion principle
when the nuclei are in a symmetric spin state, and are
allowed only for the nuclear-spin antisymmetric states.
The single-channel cold collisions, governed by electronic
interactions between atoms, thus induce an exchange in-
teraction between nuclei, even though there is no direct
interaction between nuclei nor between electrons and nu-
clei. The ability of nuclear spins to act as a switch that turns
on and off electron interactions provides a mechanism by
which quantum information can be protected from the
environment while simultaneously qubits are strongly
coupled to one another in a manner depending on the
logical basis states.

We take group-II-like elements with isotopes of spin I �
1=2 nuclei to encode qubits, e.g., 171Yb, with logical basis

states defined in the usual way, j0i � j"i, j1i � j#i. Single
qubit rotations can be achieved via rf pulses in a strong bias
magnetic field, as in NMR. Interactions between atoms that
have nuclei spin polarized in the same direction are block-
aded (to the degree that p-wave collisions are negligible).
Atoms undergo an exchange interaction as the nuclear-spin
singlet component receives an elastic collisional phase
shift relative to the noninteracting triplet component, re-
sulting in the well known
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SWAP
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, a universal entangling
gate [1]. The exchange interaction was previously studied
in the context of electrons in a double quantum dot [8]. In
our realization, the composite nature of the atom allows
one to separate the degree of freedom which stores the
quantum information (the nucleus) from that which pro-
vides physical coupling (the electrons).

Coherent collisions require well-localized atomic wave
packets whose motion is highly controlled. We evaluate the
performance of two-qubit entangling gates using dipole
traps formed by tightly focused optical tweezers, recently
used to trap individual atoms [9]. Dorner et al. have studied
ultracold collisions of bosonic alkalis in such tweezers
[10]. Similar gates have been studied theoretically in a
lattice of double-well potentials formed by multiple fre-
quencies [11] and more recently, experiments explore the
control of atoms in double-well lattices formed in 2D
through overlapping lattices of orthogonal polarizations
[12]. We revisit the problem of implementing gates in
double-well potentials, here in the context of the exchange
blockade.

We take a simple one-dimensional model assuming tight
confinement in directions transverse to the direction of the
collision. We model the two-tweezer dipole trap as a
symmetric double well of Gaussian shaped potentials,
each of depth V0 and rms width �, separated by distance
d. Single-atom orbitals are the eigenstates of the double
well, which are then filled with two atoms for a two-qubit
system, in analogy to the two electrons occupying the
molecular orbitals of a diatomic hydrogen molecule. The
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two atomic qubits interact via a contact term arising solely
from s-wave collisions, Vint�x1 � x2� � g��x1 � x2�. The
coupling constant, g, follows from a quasi-1D approxima-
tion to the scattering process, ignoring renormalization
effects [13]. Throughout, we choose harmonic oscillator
units such that energy is measured in units of @!, where

! �
���������������������
V0=�m�

2�
p

is the oscillation frequency along x, and
lengths are measured in units of x0 �

�����������������
@=�m!�

p
. The di-

mensionless interaction strength is then g � 2�as=x0��
�!?=!�, where as is the s-wave scattering length and
!? is the oscillation frequency in the transverse dimen-
sion. We take a well depth of V0 � 10@!, or @! �
20ER=�k��2, where ER is the recoil energy. Though in
principle deeper wells and larger oscillation frequencies
are possible [9], high-fidelity operation requires optimal
control of that depth and an asymmetric ‘‘tilt’’ of the well
[10,12], not under consideration here.

To implement a gate, we envision separated noninteract-
ing atoms, each in its own tweezer, that are brought to-
gether into the same well as d! 0 where cold collisions
occur and then are separated again into individual traps. As
the wave packets overlap, atoms lose their identity, and
proper Fermi symmetrization of the state is necessary. We
define our two-qubit logical basis such that the first qubit is
localized in the left (L) well and the second in the right (R),

 

j0; 0i � f̂yL;"f̂
y
R;"jvaci � ���x1; x2�j""i; (1a)

j0; 1i � f̂yL;"f̂
y
R;#jvaci �

1���
2
p ����x1; x2�j�Ti

����x1; x2�j�Si�; (1b)

j1; 0i � f̂yL;#f̂
y
R;"jvaci �

1���
2
p ����x1; x2�j�Ti

����x1; x2�j�Si�; (1c)

j1; 1i � f̂yL;#f̂
y
R;#jvaci � ���x1; x2�j##i: (1d)

Here we have used both first and second quantized nota-
tion, where f̂y are fermionic creation operators for local-
ized atoms, ���x1;x2�� � L�x1� R�x2�� R�x1� L�x2�	=���

2
p

are two-atom orbitals, and j�T�S�i � �j"ij#i � j#ij"i�=���
2
p

are the triplet (singlet) nuclear-spin states with zero
projection of angular momentum. The exact motional state
is irrelevant to the encoded quantum information in the
nuclear spin, but may affect the nature of the collision and
fidelity of the gate. We begin by taking the atoms to be
cooled to their motional ground state and later treat the
effects of finite temperature.

As seen in the logical basis states, Eq. (1), a SWAP
operation, j0; 1i , j1; 0i, follows from a sign change be-
tween singlet and triplet components, or a� rotation in this
subspace; the entangling

������������
SWAP
p

is a �=2 rotation. As a
first attempt to implement this gate, we consider adiabatic
evolution, though certainly this is not optimal for speed. In
order to better understand this, consider the case of non-
interacting atoms. Single particle eigenstates are parity

eigenstates, which for large separation, become doubly
degenerate pairs of states corresponding to gerade and
ungerade combinations of the left/right localized wave
packets in the separate tweezers denoted jgn�un�i �
�jLni � jRni�=

���
2
p

for the nth vibrational eigenstates. For
zero separation, jgni ! jv2ni, juni ! jv2n�1i, where jvni
is a vibration eigenstate of the unified well. At large
separation and in the absence of interactions, there is a
fourfold degenerate ground-state manifold of two-particle
orbitals. These are described by the spatial orbitals with
one atom per well as defined in the logical basis ��, and
those with two atoms per lattice site (associated with spin
singlets), j�ci � �jLijLi � jRijRi�

���
2
p

and j�di �

�jLijLi � jRijRi�
���
2
p

. The state j�di has odd parity under
spatial inversion and must be antisymmetric under spin
exchange, and thus does not couple to the even-parity spin
singlet in the logical basis.

In the presence of interactions, degeneracy between
singly and doubly occupied states is broken. Localized
states become eigenstates for separated traps as in the
Mott insulator phase [4,14]. The degeneracy of states
j��i and j�ci for separated wells is broken by the on-
site interaction. A relative phase then develops between
singlet and triplet components of the logical basis, and the
desired

������������
SWAP
p

operation is achieved when

 �� ��� � ��1=2� n�; (2)

where �� �
R
t
0 dt

0E��t0�=@ is the adiabatic dynamical
phase.

Adiabatic energy curves (relative to the noninteracting
ground-state singlet adiabatic curve) for states that have no
more that one quantum of vibration in separated wells are
shown in Fig. 1, for different interaction strengths. Only
even-parity singlets and odd-parity triplets are shown since
these are the symmetries of the logical basis states. The
triplet states are unchanged by interactions and singlets
are found by diagonalizing the s-wave contact interaction
in the noninteracting basis. The basis orbitals are calcu-
lated using a discrete variable representation method [15]
to find single-atom bound states in the double well. These
are occupied with two atoms in accordance with Fermi
symmetry.

The behavior of the adiabatic curves as a function of
interaction strength elucidates the possible operating
points of a high-fidelity entangling interaction. For weak
interactions, g
 1, the very small energy gap between
j��i and j�ci limits the ability to maintain adiabaticity as
the traps are merged. In this regime, the tunneling energy
dominates over the interaction energy before the wells are
fully merged, and diabatic transitions arise as the ground-
state wave function changes from right or left localized to
delocalized across the double well. In principle, tunneling
can be suppressed through an asymmetric well tilt that
provides stronger symmetry breaking, with the capacity
to maintain adiabaticity while simultaneously inducing an
exchange interaction [10,12]. For intermediate interac-
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tions, g� 1, a large gap is opened between j��i and j�ci,
in which case symmetric double wells is the preferred
geometry for adiabatic operation of the gate. For g� 1,
whereas one might expect the most favorable operation of
the exchange blockade, paradoxically the opposite is true.
Singlet and triplet potentials again become degenerate as
one enters the Tonks-Girardaeu regime of the one-
dimensional potential [16]. In a contact interaction with
infinitely strong coupling in one dimension, the particles
are excluded from being at the same position, regardless of
the symmetry of their spin state. As a result, exchange
interaction between spins is reduced. This is illustrated in
Fig. 2 which shows the gate time in the case of adiabatic
evolution as a function of interaction strength for different
values of n in Eq. (2). The divergence of � as g! 1
represents the Tonks regime. Since the Tonks gas is an
artifact of our one-dimensional model, this is not a funda-
mental limitation. In future work we will study tight con-
finement in 3D.

Though gates times can be calculated based on Eq. (2),
there is no guarantee that these times are consistent with
adiabatic evolution. To evaluate the performance of this
protocol, we must numerically solve the full time-
dependent Schrödinger equation. Expanding in the adia-
batic basis fj��t�ig and going to the rotating frame of the
dynamical phase, the probability amplitudes evolve ac-
cording to

 _c � � �
X

�

h�j
@
@t
j�ie�i�������c�: (3)

In our numerical integration, we take a finite basis con-

structed from the span of two-particle orbitals with a
maximum of two quanta of vibration in the separated
wells. The trajectory, d�t�, is chosen as a (suboptimal)
linear ramp so that the

������������
SWAP
p

is achieved according to
the adiabatic dynamic phase evolution.

We seek the fidelity of operation representing the over-
lap between final and target states. Since quantum infor-
mation is stored in the nuclear spin, we trace over the
vibrational excitations. For identical particles, one must
take care so as not to artificially introduce entropy asso-
ciated with (anti)symmetrization; subsystems must be de-
fined by left/right localized atoms, not by particle label
[17]. The 4� 4 reduced density operator for the qubits is
thus

 	spin
x0y0;xy��� �

X

n;n0
hvacjf̂Ln;x0 f̂Rn0 ;y0 	̂���f̂

y
Ln;x

f̂yRn0 ;yjvaci; (4)

where Ln and Rn are left/right localized wave packets with
n units of vibration, and x and y denote 0 or 1 for the
logical basis. In general, this density matrix will not have
unit trace since there is finite probability of finding two
atoms in the same well. Double occupancy represents an
infidelity in the operation. The remaining infidelity arises
from an error in reaching the target two-qubit spin state.
We define this target as the two-atom spin state reached by
adiabatic evolution for time �, where the initial state is the
logical basis state j0; 1i. The other possible initial logical
basis states j0; 0i and j1; 1i evolve to good approximation
by the unit operator and do not significantly contribute to
infidelities when overall performance is good. Our fidelity
is the overlap between the chosen target and the two-atom
spin state as calculated by the numerical solution under full
evolution by the time-dependent Schrödinger equation,

 F � h target���j	̂spin���j target���i: (5)

 

FIG. 2. Gate time under the assumption of adiabatic evolution
as a function of g for different values of n in Eq. (2): n � 1, 5,
10, 25, 50, 100, 200, 250, 300. Note, for n small, the short gates
times give very low fidelities due to diabatic effects in the true
evolution (see Fig. 3). The divergence of these curves as g
becomes large follows from the effect of the Tonks-Girardaeu
regime.

 

FIG. 1 (color online). Adiabatic energy curves relative to the
noninteracting ground state as a function of trap separation for
the first two triplet (blue dotted lines) and the first three singlet
states (red solid lines) and for different values of interaction
coupling strength g: (a) g�0, (b) g�0:2, (c) g�1, (d) g�10.
For large separation, these asymptote to single well energy levels
with 0 or 1 unit of vibration. All quantities are normalized to
harmonic oscillator units (see text). For large interaction
strength, (d), singlets and triplets become degenerate corre-
sponding to the Tonks-Giradeau regime.
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When the time � is chosen to satisfy Eq. (2), plotted in
Fig. 2, this is the fidelity for achieving the desired gate,
j targeti �

������������
SWAP
p

j0; 1i � �j0; 1i � ij1; 0i�=
���
2
p

.
Figure 3 shows the fidelity of adiabatic operation as a

function of gate time and interaction strength. Though high
fidelity can be achieved for a wide range of parameters,
robust operation will require high interactions and long
time evolution. As an example, for a coupling strength of
g � 8 and gate time of � � 36�2�=!�, the fidelity to
implement a

������������
SWAP
p

is 0.982.
The analysis above assumed initial preparation of the

atoms in the vibrational ground state. We can study the
tolerance to finite temperature in the initial state by aver-
aging over a Boltzmann distribution of vibrational ex-
citations. The fidelity as a function of hn�0�i falls off
approximately linearly, F �hn�0�i� � �1:78hn�0�i �F 0.
The particular value of F 0 depends on the parameters, as
shown in Fig. 3. A necessary condition for high fidelity is
that initial vibrational excitation satisfies hn�0�i< 0:01 or
kT=@!< 0:1. This extreme cooling requirement limits the
practically of implementing this protocol in the lab. Our
focus here is on the proof-of-principle protocol, far from
optimal, and generally very slow. Note, however, because
the atom’s nuclear spin is decoupled from electronic states,
in principle damping forces can be introduced which main-
tain atoms near the ground vibrational state without deco-
hering the qubit. Such refrigeration can be introduced by
laser cooling that does not flip nuclear spin [18] or through
immersion in a superfluid where sympathetic cooling can
occur [19]. More optimal protocols will be studied in
future work.

In conclusion, we have presented a new protocol for
entangling qubits based on an exchange blockade between

identical particles. Though we have studied this protocol in
the context of identical spin-1=2 fermions, our result gen-
eralizes for an arbitrary spin, qubits or qudits, Bose or
Fermi, and is not restricted to elements with electron and
nuclear spin decoupled. An equivalent evolution will arise
if, in the absence of symmetrization for identical particles,
the scattering phase shift is independent of logical basis
state. For the case of 1S0 elements with an arbitrary nuclear
spin, we can define 2s� 1 logical states fjn;migwhich will
undergo a

������������
SWAP
p

operation, jn;mi ) jn;mi � ijm; ni, as
a consequence of a cold collision and the exchange block-
ade. As another example, two ultracold 87Rb atoms (bo-
sons) will incur a s-wave collisional phase shift essentially
independent of the magnetic sublevel. If one encodes a
qubit in two sublevels, j0i � jF;mi; j1i � jF0; m0i, the
logical basis states are equivalent to Eq. (1), with Bose-
symmetry substitution, j��i , j��i. The s-wave colli-
sions now occur for the symmetric combination of internal
hyperfine levels, but not for the antisymmetric combina-
tion. An equivalent protocol of bringing identical atoms
into the same well and then separating them will yield a������������

SWAP
p
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FIG. 3 (color online). Fidelity of adiabatic operation starting in
the logical basis state j0; 1i, according to Eq. (5) as a function of
g and gate time �. When � and g are chosen according to Eq. (2),
this corresponds to the fidelity of the
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gate.
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