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Stroke patterns for Purcell’s three-link swimmer are optimized. We model the swimmer as a jointed
chain of three slender rods moving in an inertialess flow. The swimmer is optimized for efficiency and
speed. We were able to attain swimmer designs significantly more efficient than those previously
suggested by authors who only consider geometric design rather than kinematic criteria. The influence
of slenderness on optimality is considered as well.
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Motivation.—A vast majority of living organisms are
unicellular and are found in an astonishing diversity at
micrometric scales. This variety is particularly striking
when considering motility. The environmental interactions
experienced by such microorganisms are fundamentally
different from those experienced by larger animals as
inertia is irrelevant and the swimming dynamics is domi-
nated by viscosity. The past decade has seen major engi-
neering innovations reaching down to nanometric
dimensions, and a growing interest has arisen in exploring
new and efficient ways to generate propulsion at these
small scales [1,2]. Previous studies have investigated
swimming at low Reynolds number analytically [3–5],
with a more recent emphasis on efficiency, optimality
[1,6–8], and the design of simple swimmers [9,10].

In his famous lecture, Life at Low Reynolds Number
[11], E. M. Purcell presented what may be the simplest
active tail that can effectively propel itself at low Reynolds
numbers—the three-link swimmer. This swimmer can be
viewed as a simplified and discontinous flagellum made of
three slender rods articulated at two hinges. In a recent
study, Becker et al. [1] optimized a discrete and limited set
of geometric parameters characterizing the infinitely slen-
der three-link swimmer. However, as the authors limited
their study to geometric design, the quantitative results
given in this work are suboptimal.

Two key ideas separate the current study from previous
work by Becker et al. as summarized in Table I. The first is
the concept of kinematic optimization versus geometric
optimization. Geometric optimization addresses questions
related to the geometric design of biological and mechani-
cal swimming devices. In contrast, kinematic optimization
confronts the question: Given a swimmer with a particular
geometry, what is the optimal actuation strategy? As an
analogy, consider an Olympic swimmer. The geometry of
the swimmer is fixed but she is physically able to employ
any number of strokes: freestyle, breaststroke, butterfly,
etc. Kinematic optimization seeks the ‘‘best’’ sequence
among this infinite array of possible stroke patterns.

The second significant difference between the present
study and previous work is that optimizing kinematics

requires a functional rather than a parametric variation.
Unlike the geometric parameters considered in earlier
studies, the stroke shape and sequence cannot be described
by a single scalar, rather it must be represented by a
continuous function (see Fig. 2). Here we extend the results
from Becker et al. to include kinematics, interactions
between the links, and the effects of slenderness to provide
a complete description of the optimal three-link swimmer.

Model of the swimmer.—Each link in our swimmer is
modeled as a rigid slender body of length 2l and radius b
with characteristic aspect ratio � � b=2l (see Fig. 1). The
Reynolds number is assumed to be small, Re � �Ul=��
1, where U is the characteristic speed of the swimmer, � is
the fluid density and � the fluid viscosity. Inertial effects
are thus neglected relative to viscous effects, and the
hydrodynamics of the system is governed by Stokes equa-
tions

 r � u � 0; �rp��r2u � 0; (1)

subject to the boundary conditions

 u � Us on S; u! 0 at 1; (2)

where u and p are the velocity and the pressure fields in the
fluid, respectively, and Us is the local velocity at the
surface, S, of the swimmer. The hydrodynamic forces
exerted by the fluid on a slender body are well known as
derived by Cox [12]. Let s be the arc length measured
along the centerline of the slender swimmer, and R, U �
Us�s�, � and R̂, Û � Us�ŝ�, �̂ the position, velocity, and
tangential unit vector of the centerline at s and ŝ, respec-
tively (see Fig. 1). The force per unit length f at s can then
be written as
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I is the identity operator and � � R� R̂.
The swimmer is modeled as an inextensible jointed

chain of three cylindrical slender rods of length 2li (where
i � 1, 2, 3), whose motion is constrained to be planar. Each
link is associated with a position vector Xi corresponding
to 3 degrees of freedom: two translational displacements of
the center of the rod and one rotation angle, Xi �
�xi; yi; �i� (see Fig. 1). Thus the entire system is completely
described by a vector of nine variables: X � �X1;X2;X3�.
The velocity vector of each link is defined as Vi � _Xi and
the dynamics are subject to the constraint that at each
hinge, the velocities of the two neighboring links are equal

 

_xi
_yi

� �
� li _�i�ẑ��i� �

_xi�1

_yi�1

� �
� li�1

_�i�1�ẑ��i�1�;

(5)

where ẑ is the unit vector out of the plane of motion.
The swimmer’s stroke pattern is controlled by imposing

the angles between two adjacent links at the hinges, �1 �
�2 � �1 and �2 � �3 � �2, which is equivalent to impos-
ing a constraint on the rotational velocities

 

_� i � _�i�1 � _�i: (6)

The slender body approximation used in this work does not
extend to overlapping arm segments; hence, we do not
consider self-intersecting stroke patterns.

All instantaneous configurations of the swimmer can be
represented by a point in the two-dimensional (�1, �2)-
phase space. Thus, all periodic stroke patterns of the
swimmer can be represented by a single closed curve in
this space. A stroke pattern in which only one arm moves at
a time appears as a square and will be referred to as the
‘‘Purcell stroke’’ as it is the original pattern proposed by
Purcell (see Fig. 2); it is also the only sequence considered
in the study by Becker et al. [1].

The hydrodynamic forces and torques, Fi � �Fxi ; F
y
i ; �i�,

on each link are calculated from Eqs. (3) and (4) integrated
over each link

 F i �
Z

2li
�f � x̂; f � ŷ;R� f�ds �

X3

j�1

Aj
i Vj: (7)

As expected from the linearity of Stokes equations, the
force vectors take an Aristotelian form and are linear
functions of the velocity. The coefficients of the matrix
Aj

i are integrated analytically for i � j and numerically
using Gauss quadrature for i � j.

In the low Reynolds number regime, the swimmer is
force- and torque-free. In our case, the slender body only
interacts with the surrounding flow and therefore, the in-
tegrals of all hydrodynamical forces and torques vanish;
thus,
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FIG. 1 (color online). Schematic of the swimmer. The slice
and corresponding notation on the left refer to the local velocity,
tangent vector, and drag force per unit length. Notation on the
right refers to the velocity, tangent vector, and force associated
with an entire link. Note that (Fxi , F

y
i ) and ( _xi, _yi) lie in the x� y

plane while _�i and �i point out of the page in the ẑ direction.
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FIG. 2. Stroke sequences of three-link swimmers in the (�1,
�2)-phase plane for: (black line) optimal efficiency, (medium
gray line) optimal velocity, and (light gray line) the optimal
‘‘Purcell stroke’’ which corresponds to the square. Small
swimmer diagrams correspond to successive configurations of
the swimmer during the stroke. The swimmer moves to the left
when the trajectory is followed counterclockwise and to the right
otherwise.

TABLE I. Summary of the parameters optimized in previous work by Becker et al. [1] and in the present study.

Geometry Kinematics
Parameter (scalar) optimization Function optimization

Arm length ratio � Slenderness 1=� Stroke amplitude Stroke pattern

Becker et al. [1] O�1=�ln��2� � �

Present study O�1=�ln��3� � � � �
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Equations (5), (6), and (8) form a system of nine first order
differential equations which is integrated using a fourth
order Runge-Kutta scheme. It is solved in nondimensional
form using the characteristic half-length of an arm link, l1,
as a reference length, lref , and the period of the stroke, �, as
a reference time.

Optimality criteria.—In order to find optimal stroke
patterns, we first need to determine an objective function,
which associates a scalar quantity to each element in the
space of feasible strokes. One such function is the distance
traveled by the swimmer during one cycle; optimizing this
function is equivalent to maximizing the average velocity,
V, in the primary direction of motion over one stroke for a
given lref and �. As each closed curve in the (�1, �2)-
phase space can be associated with a unique swimming
pattern, this function is well defined.

A second way to characterize the optimality of a swim-
ming stroke is to define an efficiency that measures the
fraction of the total energy spent that is used to propel the
swimmer in a useful direction. However, this energy-based
optimality criterion is dynamic in nature, whereas our
system is essentially geometric. The constraints that define
the closed curve in phase space do not uniquely restrict the
dynamics of the swimmer—as the parametrization along
the curve is not specified—and therefore do not uniquely
define efficiency. However, it can be shown that there
exists a unique parametrization that optimizes efficiency
for a given curve. Consider the mechanical power at any
given time:

 � �
Z 2l

0
f � Uds �

X3

i�1

Fi � Vi � VTAV; (9)

where A is obtained by assembling the blocks Aj
i , and can

be shown to be symmetric positive definite. For a given
stroke sequence one can demonstrate that the total work,
W �

R
�dt, is minimized for a given parametrization if �

remains constant over one cycle (see Becker et al. [1] for a
rigorous proof). It can be further shown that this minimum
is attained and unique. Thus, a well-defined minimal work
can be associated with every stroke sequence in the (�1,
�2)-phase space.

The efficiency criterion, E, used in this study is similar to
that defined in previous work by Lighthill and Purcell and
identical to the one used in Becker et al. [1]. For a given
stroke, the efficiency represents the ratio of the power
required to drag the swimmer in its straightened configu-
ration (�1 � 0, �2 � 0) at its average speed to the aver-
age power exerted mechanically against viscosity

 E �
4��l

ln�2�� �
3
2

V2

�
; (10)

where V is the swimming speed averaged over one stroke

and � is the average optimal mechanical power associated
with the stroke.

Optimization procedure.—Without loss of generality,
the stroke can be parametrized by two periodic functions
�1 and �2 of period � which can each be represented as a
Fourier series. For regular and differentiable functions, the
Fourier coefficients decay rapidly and thus our optimiza-
tion procedure is based on finding the optimal first k
coefficients of the series. In addition to the stroke pattern,
the geometry of the swimmer is optimized as well. This
requires two additional design parameters: the slenderness,
1=�, and the relative size of the middle link, � � l2=l1.
The swimmer is assumed symmetric i.e. l1 � l3. The opti-
mal solution is found via a gradient search on a finite set of
coefficients using the Broyden’s quasi-Newton method
[13]. Gradients are computed numerically.

Discussion.—Several general observations can be made
regarding optimal stroke sequences. First, because of the
linearity and time independence of the Stokes equations,
we expect optimal strokes to be symmetric with respect to
reflections across the axes �1 � �2 and �1 � ��2. This
can be seen by considering a geometrical configuration
where �1 � �2 in which the two arms are in a symmetric
position (see diagrams on Fig. 2). In this configuration,
sweeping the right arm down and moving forward in time
is indistinguishable from sweeping the left arm down and
moving backwards in time. The optimal stroke should be
invariant if played backwards in time (time independency)
and reflected about the body’s line of symmetry (linearity).
Hence �1 � �2 is an axis of symmetry. The second axis
of symmetry can be deduced in a similar way, as the arms
of the swimmer are also interchangeable in the configura-
tion �1 � ��2 [14].

These symmetries allow us to consider only one quarter
of the optimal curve in a frame (�̂1, �̂2) that has been
rotated from the original frame by �=4:

 

�̂1 �
X1

p�1;odd

ap cos
�
2�pt
�

�
;

�̂2 �
X1

p�1;odd

bp sin
�
2�pt
�

�
:

(11)

These axes of symmetry imply that there is no net rotation
over one complete stroke cycle, preventing the optimal
swimmer from going in circles. In addition, two observa-
tions can be made regarding the amplitude of optimal
strokes sequences. For small amplitude strokes, both the
average speed, V, and the mechanical work, �, go to zero.
An expansion of the efficiency, E, shows that it too decays
to zero for small �1 and �2. Thus, regardless of which of
the two optimality criteria we choose, small strokes are
never desirable. For larger amplitudes, V is bounded while
it can be shown that � increases quadratically with ampli-
tude; so again, large amplitude strokes are suboptimal.
Thus optimal stroke patterns are expected to exist and to
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be found within a finite ring in the (�1, �2)-phase space
centered at the origin.

We first consider the case of an infinitely slender
swimmer, �! 0. Optimal stroke sequences are shown in
Fig. 2. The optimal distance stroke corresponds to a di-
mensionless distance traveled of 0.623 with an efficiency
of 0.0093. In comparison, the maximum distance attained
with the Purcell stroke is 0.483 with a corresponding
efficiency of 0.0063. The difference is even more striking
when considering the efficiency criterion. The maximum
efficiency reached by the optimized three-link swimmer is
0.0130 (see Fig. 2) for a link ratio of � � 0:747 and a
corresponding dimensionless distance traveled of 0.492; in
contrast, the best efficiency achieved with the Purcell
stroke is 0.0077 with � � 0:809 (and a distance of 0.420)
as computed in [1]. This represents an increase of 69%,
emphasizing the relevance of optimizing kinematics in
viscously dominated locomotion [15].

The normalized error in the efficiency decreases rapidly
(1=n5) as the number of Fourier terms is increased [see
Fig. 3(a)]. In fact the efficiency of the stroke, computed
with only the first term in the expansion, is within 1% of
that of the optimal solution. In addition, the coefficients
of the Fourier series decay to zero exponentially [see
Fig. 3(b)], a signature of a smooth parametrization.
These two facts show that the first two terms—a1 and b1

in Eq. (11)—largely determine the characteristics of the
stroke. Hence we can approximate the properties of the
optimal solution by looking at only two coefficients.
Figure 3(c) shows that E is a quasiconvex function with a
unique global maximum in this reduced space. Although
the optimization procedure only guarantees convergence to
a local maximum, this strongly suggests that the global
optimum has been achieved.

Figure 4 shows that efficiency also increases with slen-
derness, asymptotically approaching the infinite slender-
ness limit for small values of �. It is curious to note that
there is an abrupt increase in efficiency for dimensionless
slenderness less than 103 which, although biological sys-
tems are clearly more complex than this very simple de-
vice, is comparable to the slenderness of the flagella of
microorganisms [16].
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FIG. 3 (color online). (a): Log-log plot of the normalized error
in the efficiency as a function of the number of terms in the
Fourier series used to find the optimal stroke. (b): Semilog plot
showing exponential decay of the amplitude of the Fourier
coefficients. (c): Efficiency as a function of the two dominant
terms of the Fourier expansion.
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FIG. 4 (color online). Efficiency of the three-link swimmer as
a function of slenderness.
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