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Scaling provides an elegant framework for understanding power-law behavior and deducing relation-
ships between critical exponents. We demonstrate that scaling theory can be generalized to develop a
framework for the analysis of diverse empirical macroecological relationships traditionally treated as
independent. Our mathematical arguments predict links between the species-area relationship, the relative
species abundance and community size spectra in excellent accord with empirical data.
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There are many complex systems in nature which ex-
hibit power-law behavior akin to those in critical phe-
nomena. One of the most important of these are
ecosystems [1,2]. Living organisms span 21 orders of
magnitude in mass and there are many known algebraic
relationships in ecology [3–12] (Fig. 1). Scaling [13] has
proven to be a powerful tool in physics for unifying seem-
ingly distinct phenomena and exploring relationships be-
tween apparently unrelated exponents. A physical system
in the vicinity of a critical point is different from an
ecosystem in several respects, and a straightforward appli-
cation of scaling ideas in ecology is not possible for the
following reasons: (i) there is a lack of knowledge of the
Hamiltonian governing the dynamics of the ecosystem;
(ii) in an ecosystem, there are no obvious dials similar to
the temperature, pressure, and magnetic field in condensed
matter physics to tune the system to or away from critical-
ity; (iii) as a consequence there is no measure of how far
from ‘‘criticality’’ an ecosystem is; and (iv) the scaling in
an ecosystem involves quantities such as the number of
species and their characteristic masses instead of standard
variables such as temperature, pressure, and magnetic field,
whose scaling is known from the singular behavior of
physical quantities as the critical point is approached.

In this Letter, we generalize scaling in order to develop a
unified framework for understanding ecological data. We
connect seemingly distinct power-law relationships, we
derive connections between apparently unrelated expo-
nents, we derive bounds on the exponents, and in some
cases we predict the exponent values. All our predictions
are in excellent accord with empirical data, when available.

Consider an ecosystem of area A with S species [14]. A
given species has a population abundance n and each
individual is characterized by a mass m. The variables m
and n will be treated as continuous variables, with nonzero
lower boundsm0 and n0, respectively. Let us now introduce
the joint probability distribution, P�m; njA�dmdn, of find-
ing a species with characteristic mass between m and m�
dm and population between n and n� dn given that the
ecosystem is in a stationary state in a region of area A. We

make the following constructive hypotheses, the first of
which is a scaling hypothesis, valid when power-law be-
havior is present, and the rest are based on empirical data
or common sense:
H 1—This assumption postulates that:

 P�m; njA� � n��1m��2F
�
n

A�1
;
m

A�2

�
: (1)

Note that m and n are not treated as independent variables

 

FIG. 1. Empirical evidence for scaling in ecology. Upper
graph: population density regressed against mean body mass
[7] (inset: scaling of the number of species [9]). Lower graph:
size spectrum for marine microbial organisms [6] (lower inset:
typical empirical evidence for species-area relationships [1,2]).

PRL 98, 068104 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 FEBRUARY 2007

0031-9007=07=98(6)=068104(4) 068104-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.98.068104


and the scaling function F does not necessarily have a
separable form. Based on the vast empirical evidence, P
is chosen to have algebraic dependencies on m and n and
this power-law behavior gets cut off by requiring that F
decays to zero sufficiently fast when at least one of the
arguments becomes large (e.g., F could be zero if at least
one of its arguments is above some threshold or goes to
zero exponentially in both arguments). Furthermore
F�x1; x2� becomes a function of one variable fi�xi� when
the other variable xj ! 0 with j � i, and fi�xi� ! const
when xi ! 0. From Eq. (1) it follows that A�1 (A�2 )
represents the characteristic scale for the maximum popu-
lation (mass). Note that �i > 0 and, for self-consistency
[see the normalization condition after Eq. (3)], 1 � �i, i �
1, 2.

H 2—The total population N ought to be proportional
to the area [9] A: N / A.

H 3—The total mass of all organisms M present in the
ecosystem scales as the area, A, M / A. While a super-
linear dependence of M on A might be viable over a small
range of variation in A, it is not sustainable as A becomes
large. On the other hand a sublinear dependence would not
correspond to a fully developed ecosystem.

H 4—This assumption appeals again to the requirement
of a fully developed ecosystem: the mass distribution of all
organisms is as spread as possible, compatible with the
previous hypotheses, having the effect of maximizing bio-
diversity. Our concern is with the comparatively simple
situation of the steady state behavior in which, over evolu-
tionary time, resources are exploited in full, individual and
collective metabolic needs are met, and enough time has
elapsed to produce a rough balance between speciation and
extinction and ecological fluxes.

H 5—This assumption postulates that the threshold
population for extinction does not depend on the character-
istic mass of the species.

The simplified assumptions H 2, H 3, and H 5 can be
readily generalized, if necessary for specific situations, by
the introduction of nontrivial exponents for the scaling
behavior of the total population and mass on the area and
for the dependence of the extinction threshold on the
species mass. It is straightforward to modify our analysis
to incorporate such scaling.

The exponents �i and �i, i � 1, 2, are our concern here
because, unlike the scaling function F, they are robust and
typically fall into certain universality classes [13]. We will
show that they are not independent within our framework,
that they are related to observable power laws and to each
other, and that self-consistency will constrain the ranges of
values of these exponents.

We illustrate the mathematics involved in our analysis
by considering the fraction of organisms with mass be-
tween m and m� dm, Pm�mjA�, where the mass m of an
organism is assumed to be greater than or equal to m0, the
mass of the smallest sized organism, and less than or equal
to MA, the mass of the largest sized organism, which is

assumed to scale as MA � A
�2 . The scaling hypothesis for

this simpler case is

 Pm�mjA� � m��2Fm

�
m
MA

�
;

with Fm�x� approaching a constant when x! 0 and zero
sufficiently fast when x� 1. This scaling form will be
derived below starting from Eq. (1). The qth moment of the
distribution is defined as

 Iq 	 hm
qi �

Z 1
m0

dmmqPm�mjA�

� M1�q��2
A

Z 1
m0=MA

dx xq��2Fm�x�:

By splitting the integral into two parts, one integrated from
m0=MA to, say, 1 and the other from 1 to1 (thus yielding a
finite number independent of MA), and using the assump-
tion regarding the asymptotic behavior of Fm at small and
large arguments one obtains

 hmqi � M1�q��2
A fc1 � c2M

�2�1�q
A � less singular termsg

�Mmax�0;1�q��2�
A :

The last step follows by noting that as MA ! 1, one has
two possibilities. If �2 � 1� q < 0, the dominant term is
c1 and the scaling is the same as the one following from
naı̈ve dimensional analysis, i.e., hmqi / Mq�1��2

A . This
result is what one would obtain from power counting in
the integral

R
1
m0
dmmqPm�mjA�: the q arises from the mq

term, the 1 from the dm term, and ��2 from the scaling
postulated above. If, on the other hand, �2 � 1� q > 0,
the dominant term of hmqi is the second term. Thus hmqi �
const and naı̈ve scaling analysis fails. The normalization
condition I0 � 1 implies that �2 > 1.

Using Eq. (1) and simple mathematics of the type illus-
trated above, we obtain an expression for a general moment
of P at large areas A (see Ref. [15]):

 Iq1;q2
	 hnq1mq2i

�
Z 1
n0

Z 1
m0

dn dmnq1mq2P�m; njA� � A q1 ;q2 ; (2)

where
 

 q1;q2
� maxf0; �1� q1 � �1��1g

�maxf0; �1� q2 ��2��2g: (3)

The normalization condition I0;0 � 1 implies �i 
 1.
Several relationships follow from considering suitable
choices of q1 and q2:

(i) The species-area relationship [1].—If N is the
total number of organisms and S is the total number of
species in the ecological system then their ratio is given
by N=S � I1;0 / A 1;0 . On using the previous results
 1;0 � �1�2� �1� when �1 < 2, a self-consistency re-
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quirement imposed by the physically valid range of the
species-area relationship exponent (see below). Using hy-
pothesis H 2, one obtains

 S� Az with z � 1��1�2��1�: (4)

Because the total number of species cannot grow faster
than the total population one has 0< z � 1 leading to the
constraint minf1; 2� 1=�1g � �1 < 2 where the bound
�1 
 1, derived above, has also been taken into account.

(ii) The scaling of total ecosystem biomass [9].—A
measure of the total mass of all organisms, M, is obtained
by I1;1 � M=S � A 1;1 . On using Eq. (4):

 M� A1�max�0;�2�2��2�� (5)

Were �2 < 2, Eq. (5) would yield a superlinear growth of
M with A. This may be viable over a small range of
variation in A but is not sustainable as A becomes large.
Hypothesis H 3 then leads to the inequality �2 
 2.

(iii) The community size spectrum .—The fraction of
individuals in a given size class regardless of species, is
given by (see Ref. [15]):

 Pm�mjA� �
S
N

Z
dnnP�n;mjA� � m��2Fm

�
m

A�2

�
; (6)

where Fm�x2� �
R
1
0 dx1x

1��1
1 F�x1; x2� and the lower limit

of the integration interval has been safely extended to zero
due to the hypothesis on the behavior of F�x1; x2� at small
x1 and the fact that �1 < 2. Our assumption regarding the
behavior of F at small x2 leads to Fm�x2� approaching a
constant value as x2 approaches zero, thus yielding a pure
power-law behavior of Pm�mjA� in the large area limit. The
largest possible spread of body size (m), which should
characterize fully developed ecosystems, hypothesis H 4,
results in �2 approaching its lowest possible value consis-
tent with the inequality derived by Eq. (5), i.e., �2 � 2,

which is in excellent accord with pervasive empirical ob-
servations [5,6].

(iv) The scaling of the mass of the biggest organism
[4].—In order to ensure the long term survival of a species,
it is necessary that it exceed a threshold population [16],
scaling according to hypothesis H 5. The population of the
species of the largest body size must equal this number and
is given by the product of the total population (which scales
linearly as area A) and Pm�MAjA� (which scales as M��2

A )
leading to MA � A1=�2 � A�2 and �2 � 1=�2 �

1
2 [more

generally from Eq. (5), �2 �
1
2 ]. This prediction is con-

sistent with recent analyses [3,4] of the maximum sizes of
terrestrial herbivores and carnivores observed across eco-
system areas (A) spanning the range from small islands and
isolated habitats up to whole continents. Note that �2

could deviate from the predicted value if the size of the
threshold population is dependent on body mass [3].

(v) The species-mass relationship [9].—Our theory pre-
dicts that the fraction of species in the mass interval (m,
m� dm), i.e., PS�m; jA�dm, has a scaling form similar to
that of the community size distribution. The scaling hy-
pothesis, Eq. (1), can be used to deduce that (see Ref. [15])

 PS�m; jA� �
Z
dnP�n;mjA� � m��2FS

�
m

A�2

�
; (7)

where FS�x2� � f2�x2� (f2 has been introduced in H 1)
implying that FS�x2� approaches a constant value at small
arguments. The total number of species, whose organisms
have a characteristic linear size L�m1=3, in the logarith-
mic bin d�logL� is given by S�LjA�d�logL� 	
AzmPS�m;A�d logm. From Eq. (7) we get

 S�LjA� � L��02F̂S

�
L

A�2=3

�
; (8)

where �02 � 3��2 �
z

�2
� 1� and F̂S�x� / x�3z=�2FS�x3�,

TABLE I. Linked scaling relationships derived from Eq. (1). Summary of the main scaling relationships as a function of the
proposed independent exponents �1, �2, �1, �2: S is the number of species within an ecosystem of area A; m and n denote the
characteristic body mass and the numerical abundance, respectively, of a species; MA denotes the largest body size; Pm is the
community size distribution, the fraction of organisms in a given size class m, regardless of their species; PS denotes the fraction of
species in a given size class; S�LjA� is the total number of species, whose organisms have a characteristic linear size L; and PRSA
represents the relative species-abundance relationship, the fraction of species with population abundance n. The scaling functions are
inter-related (see text). Note that Fm�x�, FS�x�, F̂S�x�, FRSA�x� ! 0 as x! 1. All these functions, except F̂S�x�, approach a constant
value as the argument approaches zero (see text). Pure power-law behavior is predicted to hold only when the scaling function is
approximately constant over a range of its argument. This holds in all the cases except for S�LjA�, a quantity discussed in Ref. [10].

Derived relationship Relation of exponents with �1, �2, �1, �2 Ideal values

S� Az z � 1��1�2� �1� z � 1
4

MA � A�2 �2 � 1=�2 �2 �
1
2 �2 � 2

Pm�mjA� � m��2Fm�
m
A�2
�

PS�mjA� � m��2FS�
m
A�2
�

S�LjA� � L��02 F̂S�
L

A�2=3� �02 �
3

�2
��2��2 � 1� ��1�2��1� � 1� �02 �

3
2

PRSA�njA� � n��1FRSA�
n
A�1
� �1 �

3
4 �1 � 1
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which behaves as x�3z=�2 at small argument. Note that,
unlike PS�mjA� which at large areas converges to a pure
power lawm�2, S�LjA� scales as L�3��2�1�Az, which is not
only different from L��02 but also has an A-dependent
amplitude. Setting z � 1

4 , and noting that �2 � 2 and
�2 �

1
2 , one obtains �02 � 3=2 in accord with a recent

analysis [10] linking the scaling of the maximal body
size, the species-area relationship and S�L; jA�.

(vi) The relative species abundance [11].—The fraction
of species with population around n, is obtained as (see
Ref. [15]):

 PRSA�njA� �
Z 1
m0

dmP�m; njA� � n��1FRSA

�
n

A�1

�
; (9)

where FRSA�x1� � f1�x1� (f1 has been introduced in H 1).
Note that FRSA�x1� approaches a constant value as x1 ! 0.
A scaling form as in Eq. (9) has been shown to hold
rigorously [17] for the self-similar model of Harte,
Kinzig, and Green [12] with �1 � 1, which is our limiting
value according to H 1. Using Eq. (4) one obtains in this
case �1 � 1� z.

Our main results are summarized in Table I. The scaling
form for the relative species abundance holds exactly for
the self-similar model of Harte, Kinzig, and Green [12]. In
accord with empirical observations, the scaling analysis
yields exponent values: �2 � 2 [5–8], �2 � 1=2 [3,4],
and �02 �

3
2 [10] on choosing the species-area relationship

exponent z � 1
4 . Our results show that scaling theory pro-

vides a general framework for the analysis of macroeco-
logical data not only for establishing links between
seemingly unconnected power-law relationships but also
for assessing deviations from the idealized situation.
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