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Optical binding along the axis of two counterpropagating laser fields may be used to organize
microparticles into longitudinal, spatially separated, arrays. Here we investigate correlations between
the displacements of two optically bound microparticles from their equilibrium positions due to noise.
Measurement of the decay time of the correlation functions of the center of mass and relative normal
modes is shown to provide an in situ method to determine the optical restoring forces acting on the bound
particles, thereby providing a test of our physical understanding of longitudinal optical binding.
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Introduction.—Colloidal suspensions are now estab-
lished as powerful and controllable systems that may
give insights into a wide range of physical systems. A
monodisperse colloidal solution has a well-defined ther-
modynamic temperature and offers a method by which to
test theories in strongly interacting physical systems such
as liquids as well as insights into aspects of condensed
matter physics [1,2]. Colloids may be influenced by the
application of an external energy potential landscape
which opens up a whole host of studies and may offer an
exciting prospect of large scale particle organization.
Within this remit the use of optical forces has proven to
be very powerful, creating energy landscapes where typi-
cally each colloidal particle may find a position, due to the
optical gradient force, that minimizes its free energy in
such an optical landscape [3–5]. Colloidal interactions are
typically complex because they are solvent mediated.
Multiple trap sites and energy landscapes can measure
hydrodynamic interactions between increasingly large col-
lections of particles—these many-body, long-range inter-
actions control the flow properties of suspensions [6–8].
The pair potential between two particles, U�r�, which
controls thermodynamic behavior (such as the crystalliza-
tion which is central to photonic applications), is also
inherently many bodied such that U�r� depends on the
positions of all particles.

In contrast to predefined optical landscapes the very
light-matter interaction between a colloidal particle and
an applied optical field can produce significant light redis-
tribution which in turn can affect the optical forces acting
on adjacent particles. This underlies the phenomena of
optical binding which has recently seen major interest
[9–12], whereby self-organized arrays of particles create
and mediate their trapping positions via interaction with
applied laser fields. A key example of this phenomenon is
longitudinal optical binding in a counterpropagating beam
geometry whereby microparticles become self-organized

into longitudinal arrays, and which has shown interesting
nonlinear and bistable behavior [11,13].

Although considerable progress has been made, the
physics underlying optical binding is still not fully under-
stood. In this Letter we experimentally and theoretically
explore the optical forces acting on a pair of optically
bound particles. The measured forces are found to be in
good agreement with numerical calculations for particles
in the Mie size regime, thereby providing a test of our
physical understanding of longitudinal optical binding. In
particular, we present the first data and analysis on the
correlated behavior of an array of two optically bound
microparticles in the presence of noise, and show that
measurement of the decay time of the correlation functions
of the center of mass and relative normal modes provides
an in situ method for determining the optical restoring
forces. We note that hydrodynamic coupling between two
individually trapped (but not optically coupled) spheres
has been observed showing time-delayed anticorrelation
[6–8]; however, to date no such studies have been per-
formed in optically bound systems where the optical cou-
pling plays a prominent role.

Theoretical model.—To model the correlated motion
between two optically bound spheres we employ the theo-
retical approach of Meiners and Quake [7] and Bartlett
et al. [8], which includes the hydrodynamic coupling be-
tween the spheres, and we extend the theory to include the
optical coupling between the particles. The two identical
spheres are assumed optically bound along the z axis by a
pair of mutually incoherent but otherwise identical coun-
terpropagating laser fields in a dual beam fiber trap. The
spheres of radius ‘‘a‘‘ are taken to have an equilibrium
separation R, and we label the deviations of the sphere
centers from their equilibrium positions along the z axis by
zj�t�, j � 1, 2. We assume that the spheres are tightly
bound in the plane transverse to the laser propagation
axis due to the confinement provided by the Gaussian
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intensity profiles, and hereafter concentrate on the longi-
tudinal motions along the z axis. Then adopting the nota-
tion of Bartlett et al. [8] the Langevin equations of motion
for small amplitude sphere displacements can be written in
matrix form as

 

d
dt

z1

z2

� �
�

A11 A12

A12 A11

� �
f1�t� � kz1 � �z2

f2�t� � kz2 � �z1

� �
: (1)

Here A11 � 1=�6��a� and A12 � 1=�4��R� detail the
longitudinal mobilities, � being the viscosity, fj�t� are
randomly fluctuating functions with correlation functions
hfj�t�i � 0 and hfi�t�fj�t�i � 2�A�1�ijkBT��t� t0�, repre-
senting the fluctuating forces acting on the spheres with
effective temperature T to account for Brownian and other
noise sources, e.g., beam pointing fluctuations, the force
terms proportional to the spring constant k � 0 represent
the direct force on a chosen sphere when that sphere is
displaced while the other sphere is held fixed, and the force
terms proportional to � describe the cross force that arises
on the chosen sphere at its equilibrium position when the
other sphere is displaced. Compared to previous studies by
Meiners and Quake [7] and Bartlett et al. [8] the new
ingredient considered here is the cross force term. The
cross force coefficient � is positive by virtue of the follow-
ing physical argument: Longitudinal optical binding arises
from the fact that the force acting on a given sphere, say
sphere 1, is composed of two components along the z axis,
a direct force directed along the positive z axis from the
laser field emanating from fiber 1 which is closest to
sphere 1, and a second oppositely directed cross force
arising from the counterpropagating laser field emanating
from fiber 2, and that is refocused onto sphere 1 by sphere 2
(see Fig. 1). Balancing of these two forces results in the
equilibrium separation for the two optically bound spheres.
If sphere 2 is displaced from its equilibrium position and
slightly away from sphere 1, then the focus produced by
sphere 2 on the field from fiber 2 will likewise be moved
away from sphere 1. This implies that the cross force acting
on sphere 1 will be reduced in comparison to the direct
force, so that sphere 1 will move in the direction of the
displacement of sphere 2, which implies � � 0. The cross
force thus tends to correlate the motions of the two spheres.

To proceed we introduce the normal mode coordinate
Z1 � �z1 � z2�=2 for the center of mass motion, and the
normal mode coordinate Z2 � �z1 � z2� for the relative
motion [7,8]. Then applying the same theoretical approach
described by Bartlett et al. [8] to the above model we find
the correlation functions (j � 1, 2)

 Cj�t� �
hZj�t�Zj�0�i

hZ2
j �t�i

� exp��jtj=�j�; (2)

where t is the delay time, and the decay times for the center
of mass (j � 1) and relative (j � 2) normal modes are
given by

 

1

�1
� kA11�1� "��1� ��=k��;

1

�2
� kA11�1� "��1� ��=k��:

(3)

Here " � A12=A11 � 3a=�2R�, and since the sphere spac-
ing R will be somewhat larger than the sphere radius a we
have " < 1. Furthermore, stability of the optically bound
state requires that the correlation decay times be positive,
which yields the condition ��=k�< 1 for stability.

Experimental measurement of the correlation decay
times can yield the restoring forces of the optical binding
of the two particles around the equilibrium. By dividing the
two decay times and rearranging we obtain

 

�
�
k

�
�

�
�1� "�=�1� "� � �2=�1

�1� "�=�1� "� � �2=�1

�
: (4)

Since " � 3a=�2R� is a known parameter, by measuring
the normal mode decay times �1;2 we have an in situ
method of measuring the ratio ��=k� of the cross and direct
force coefficients, and the direct force coefficient k may
then be found using Eq. (3). The direct force constant
clearly plays the role of a trap stiffness and could be
measured using standard methods for single particle traps,
see, for example, Ref. [14]. The new element here is the
cross force term which is an inherently multiparticle effect
(illustrated in Fig. 1 as a spring between the spheres), and
hence our proposal for a new approach based on particle
correlations is required.

The direct and cross force coefficients can also be cal-
culated theoretically for particles in the Mie size regime
using the wave optics approach described in Ref. [13]. As

 

FIG. 1. Fiber optical trap setup: the counterpropagating light
fields (CP1 and CP2) at 1070 nm emerge from two single mode
fibers (F1 and F2) with a separation of the fiber facets Df. The
array is formed in the gap between the two fibers with R being
the equilibrium separation of the spheres centers and z1;2 indicate
small displacements from the equilibrium position of the two
spheres along the z axis. The array center of symmetry (R=2)
coincides with half the fiber separation (Df=2). The two normal
modes of the bound array are highlighted in the graphic: The
dashed line represents the potential related to the center of mass
motion of the two-sphere system. The spring between the two
spheres indicates the optical cross interaction between the
spheres, the relative motion of them within the system.
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an example to be compared against the experiment con-
sider the case of two counterpropagating Gaussian laser
beams of wavelength 1:07 �m, spot size w0 � 3:4 �m,
and waist (fiber) separation 50 �m, and two particles of
radius � 1:5 �m and refractive-index ns � 1:41 im-
bedded in a host liquid of refractive index nh � 1:328
(deuterium). The small index difference �ns � nh� �
0:082 between the sphere and host medium combined
with the fact that the sphere is in the Mie size regime
means that the paraxial wave theory of Ref. [13] is appli-
cable. Then we find an equilibrium spacing R � 6:9 �m,
giving " � 0:326, and k � 0:31 pN=�m, � �
0:24 pN=�m, and ��=k� � 0:78 for a laser power of
110 mW [The raw numerical data for the direct (crosses)
and cross (circles) forces are shown in Fig. 2(a)]. Both the
direct and cross force coefficients scale linearly with the
laser input power so that the ratio ��=k� is independent of
laser power.

Experiment.—A dual beam fiber optical trap [15] as
illustrated in Fig. 1 was used for our experimental studies,
and is discussed in detail elsewhere [11,13,16]. The two
opposing fibers (marked F1 and F2 in Fig. 1) were operated
using light from a continuous wave ytterbium fiber laser
(IPG Photonics) at � � 1070 nm with an optical isolator to
avoid perturbations of the laser due to back reflections. The
laser coherence length was very short and the experimental
beam path ensured we could ignore any interference ef-
fects. The light was coupled into a single mode fiber of
mode size 3:4 �m@1070 nm. It is split into two equal
beams via a 2	 2 fiber splitter (OZ optics) with a 50:50
splitting ratio to provide equal field power distributions
within the trap of 110 mW from each fiber. Additionally
the back coupled light from fiber F1 into F2 and vice versa
was measured with a power meter at the fiber splitter’s
second in-coupling port (similar to a Sagnac fiber interfer-
ometer setup) to observe and eradicate long term drift of

the coupling setup. This enables us to achieve overall light
intensity stability within the trap of better than 7% over
multiple experimental realizations. To further ensure sym-
metric array formation at half the fiber separation one arm
could also be attenuated by a variable fiber attenuator, and
the fibers were of different length to avoid standing wave
effects. The sample chamber consisted of a polydimethyl-
siloxane (PDMS) microfluidic structure in which the two
fibers were embedded to form a counterpropagating fiber
trap with a fixed separation Df between the fiber surfaces.
The setup was allowed to temperature stabilize to 20 
C�
0:5 
C.

A monodisperse mixture of 3 �m silica microspheres in
deuterium dioxide (D2O) was injected through a 100 �m
flow channel, perpendicular to the fiber trap. The micro-
fluidic structure was hermetically sealed to prevent evapo-
ration and flow within the sample. A helper tweezer
allowed the initialization (loading) of the array and allowed
a low sphere density within the sample. The two-sphere
array was observed via a microscope objective (Nikon plan
oil-immersion 50	 0:9) onto the CCD array of a fast
camera (Basler A622f) with a data acquisition rate of �t �
0:0026 s; Fig. 1 contains a typical frame of the captured
video as an underlaid background image. Following the
approach of [6], the captured frames were analyzed utiliz-
ing an IDL based particle tracking software [17] and the
particle position in z1;2 extracted with an accuracy of better
than 50 nm to sufficiently capture the rms displacement of
the individual spheres of about 120 nm. Subsequent data
processing involved compensation of an angular offset of
the z axis to avoid crosstalk between the z and x coordi-
nates of the spheres. Over a period of 26 sec the center of
mass coordinate Z1 � �z1 � z2�=2 for the two particles,
and the relative coordinate Z2 � �z1 � z2�was determined,
as the correlation timescale of the sphere system is ex-
pected to be at the order of seconds. From 25 of these data

 

(a) (b)

FIG. 2 (color online). (a) Theoretical calculation of the direct (crosses) and cross (circles) force components, from the slope of the
linear fit the coefficients for �=k can be deduced to k � 0:31 pN=�m and � � 0:24 pN=�m, respectively. (b) Normalized
autocorrelation functions averaged over 25 consecutive data sets for the center of mass normal mode (dashed line) yielding �1 �
0:26 s, and relative normal mode (solid line) giving �2 � 0:14 s.
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sets the averaged autocorrelation functions was calculated
to determine the correlation decay times �1 and �2.

Results.—The following experiments were carried out
using an array of two 3 �m diameter spheres, a fiber
separation Df � 50� 2 mm, and an output power of
110 mW emerging from each fiber. The experimentally
observed value of the averaged center to center separation
(R) of the array of 6:7 �m is in acceptable agreement with
the theoretical value of 6:9 �m. The experimentally mea-
sured correlation functions are shown in Fig. 2(b), and
show the expected decay with increasing delay time. The
nonexponential decay evident for delays larger than 0.5 sec
may be due to sampling issues related to the finite size of
the data sets and are similar to that reported in Ref. [6]. By
varying the data set size we have ensured that results for
delays less than 0.5 sec are robust against variations.

By reading the normal mode decay times �1;2 from the
data as the delay times at which the autocorrelations drop
to 1=e, which occurs for delays less than 0.5 sec, we obtain
�1 � 0:26 sec and �2 � 0:14 sec . Using Eq. (4) we then
find the experimentally determined ratio of the cross and
direct force coefficients ��=k� � 0:72, in contrast to the
theoretical value of ��=k� � 0:77, and using Eqs. (3) and
(4) we find k � 0:29 pN=�m experimentally, in compari-
son to the theoretical value of k � 0:31 pN=�m. Thus, we
have acceptable agreement between the theory and experi-
ment for the optical forces acting on the two microparticles
in the optically bound array.

Conclusion.—In conclusion, we have demonstrated the
utility of measuring particle correlations as a means of
measuring the optical forces acting within optically bound
arrays. We also observe excellent agreement between the
measured optical forces and numerical simulations for
particles in the Mie size regime, thereby providing a key
test of our physical understanding of longitudinal optical
binding. Measuring the optical force coefficients means
that the full linear response of the optically bound system
around its equilibrium, encapsulated in Eq. (1), is now
attained so that one may now explore the response of the
system to external modulations using, e.g., external tweez-
ers. Our results are also an important step towards explor-
ing the nonlinear response of optically bound arrays for
large amplitude modulations.
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