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Recent experiments on the organic compound �-�BEDT-TTF�2Cu2�CN�3 raise the possibility that the
system may be described as a quantum spin liquid. Here we propose a pairing state caused by the
‘‘Amperean’’ attractive interaction between spinons on a Fermi surface mediated by the U(1) gauge field.
We show that this state can explain many of the observed low temperature phenomena and discuss testable
consequences.
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The organic compound �-�BEDT-TTF�2Cu2�CN�3
shows great promise as the first candidate [1,2] which
realizes the spin liquid state in dimension greater than
one [3]. It is a quasi-two-dimensional material where
each plane forms a half filled triangular lattice. While it
is a Mott insulator, there is no magnetic long range order.
The uniform spin susceptibility and the spin lattice relaxa-
tion rate 1=T1T are finite in the zero temperature limit
[1,4]. Recently, a specific heat measurement was reported
which extrapolates to a linear T coefficient � [5]. The �
and spin susceptibility form a Wilson ratio close to unity.
These are properties usually associated with metals rather
than insulators. While an alternative interpretation in terms
of Anderson localization has been proposed, we find that
the variable range hopping fit to the resistivity [4], when
combined with the density of states derived from �, im-
plies a localization length of 0.9 lattice spacing. Such a
short localization requires very strong disorder, which
make this interpretation implausible.

Theoretically, the existence of the spin liquid state has
been suggested from the studies of the Heisenberg model
extended to include ring exchange [6,7] and the Hubbard
model [8–10] on the triangular lattice on the insulating side
of the Mott transition. In the spin liquid state, the low
energy effective theory becomes the U(1) gauge theory
coupled with a spinon which forms a Fermi surface [9].
The spinon carries only spin but not charge, and it contrib-
utes to the specific heat and thermal conductivity even in
the insulating state. The system of the gapless spinon and
the gauge field is a non-Fermi liquid state [11,12] and
exhibits singular temperature dependence of a specific
heat coefficient �� T�1=3. However, recent specific heat
measurement does not show this singular behavior [5].
Moreover, there exists a kink in the specific heat around
6 K, which suggests that there is a peak in the electronic
specific heat if the phonon part is assumed to be smooth.
Around the same temperature, the uniform susceptibility
also shows a sharp drop before it saturates to a finite value
in the zero temperature limit. These suggest that there is a
phase transition or a crossover from the high temperature

phase which is described by the non-Fermi liquid state to a
low temperature Fermi liquid state. In the present Letter,
we propose that the low temperature phase may be under-
stood as a novel paired state of spinons that arises out of the
U(1) spin liquid state with spinon Fermi surface.

Inspired by Ampere’s discovery that two wires carrying
parallel currents attract each other [13], we note that the
interaction is attractive when the two spinons have paral-
lel momenta. We therefore explore the possibility of
pairing two spinons on the same side of the Fermi surface.
The resulting state has a number of properties that are
attractive for an explanation of the experiments in
�-�BEDT-TTF�2Cu2�CN�3. In particular, the pairing gaps
out the gauge field so that the unpaired portion of the Fermi
surface gives a linear specific heat at low temperature. We
discuss various consequences of our proposal that may be
tested in future experiments.

Consider the system of a spinon with the Fermi surface
interacting with a (noncompact) U(1) gauge field in 2�
1D:

 L �  ���@0 � i���� � �
1

2m
 ����ir� a�2 �

�
1

4g2 fijfij: (1)

Here x0 is the imaginary time and x � �x1; x2� is the 2d
spatial coordinate.  � is the spinon field with spin�, and�
is the chemical potential. Repeated spin indices are
summed. ai � ��; a� is the U(1) gauge field, with i �
0; 1; 2, fij is the field strength tensor, and g is the gauge
coupling. We expect g2 to be proportional to the charge gap
and will ignore the last term in Eq. (1) in the following. We
choose the Coulomb gauge where r � a � 0. We are inter-
ested in the stability of a local Fermi surface in the mo-
mentum space, and we focus on a patch of Fermi surface
which is centered at a momentum Q, with jQj � kF.
Therefore, we integrate out the spinon fields except for
those in the patch. The massless spinons screen the tem-
poral gauge field �. However, the transverse gauge field is
not screened, and it can mediate a long range interaction
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between spinons. The dressed propagator of the transverse
gauge field is given by

 D�k� �
1

�o
jk0j����������������������

jkj2��k0= �vF�2
p

�jk0j= �vF
� �djkj2

; (2)

where k � �k0;k� is the energy-momentum vector, and
�o � �vF �m=� and �d � 1=12� �m are the Landau damping
and diamagnetic susceptibility, respectively. �vF is the
Fermi velocity and �m is the mass, which are averaged
over the Fermi surface which has been integrated out.
The transverse gauge field mediates an interaction between
spinons

 Sint � �
1

2V�

X
p1;p2;k

D�k�

	
�p1 	 k̂� � �p2 	 k̂�

m2  ��p1�k
 �p1

 ��0p2�k
 �0p2

;

(3)

where V is the volume of the system, � � 1=�kBT�, and m
is the mass of the spinon in the vicinity of Q on the Fermi
surface. Motivated by the Amperean attraction, consider
the pairing of two spinons with energy-momenta p1 �
Q� p, p2 � Q� p, where 2Q is the net energy-
momentum of the pair with Q0 � 0, jQj � kF, and p is
the relative energy-momentum, with jpj 
 jQj. Note that
the pair is made of two spinons on the same side of the
Fermi surface, and it carries a large net momentum of 2kF.
We decompose the two body interaction into a pairing
channel by introducing the Hubbard Stratonovich field
��0�
p :

 

Sint �
1

2V�

X
p;p0
v�p0 � p�

	 ���0��
p0 ��0�

p ���0��
p0  �0Q�p �Q�p � c:c:�; (4)

where v�k� � �jQ	 k̂j2=m2�D�k�, and we used �Q�
p� 	 k̂  Q	 k̂. Pairing may occur in the singlet chan-
nel, i.e., �"#p � �p, �#"p � ���p, and �""p � �##p � 0, in
which case �p is an even function of p, or the triplet
channel, where �p is odd in p. Now we integrate out the
rest of the spinon field to obtain the Landau-Ginzburg free
energy density [14]:

 f��� � �y�v� v�v���O��4�: (5)

Here every product is a contraction of energy-momentum
indices with a measure 1

V� . � is a vector with component
�p, and v and � are matrices with elements vp0;p �
v�p0 � p� and �p0;p � V�g�Q� p�g�Q� p�	p0;p, re-
spectively. g�p� is the spinon propagator given by
g�p� � 1=fi�p0 � 
jp0j

2=3sgn�p0�� � �pg, with 
 �

vF=2�
���
3
p
�2=3
d �1=3

o and �p is the spinon energy dispersion.
Here vF is the Fermi velocity at the patch, which generally
differs from the averaged one ( �vF).

The system is unstable against developing pairing am-
plitude when an eigenvalue of the kernel (v� v�v) be-
comes zero or negative. Defining � � v�, we write the
integral eigenvalue equation at zero temperature:

 E��p� �
Z dp0

�2��3
v�p� p0�g�Q� p0�g�Q� p0���p0�;

(6)

where E is the eigenvalue and � is the eigenvector. Along
the direction of the eigenvector, the free energy density
becomes f���  �y�1� v��� � �1� E��yv�, and the
system becomes unstable if E> 1. First, we approximately
solve the equation analytically by guessing an ansatz for
the eigenvector. Then we will check the validity of the
analytic solution by solving the equation numerically with-
out assuming a specific form of the eigenvector. We first
consider singlet pairing.

In order to guess the form of the eigenvector, we deter-
mine the important region of integration for p0 in Eq. (6). If
the pairing interaction were instantaneous and the spinon
did not have the frequency-dependent self-energy correc-
tion, the p00 integration would impose the constraint that
both of the constituent spinons of a pair should be on the
outside of the Fermi surface, that is, jvFp0kj< p02?=2m,
where p0

k
(p0?) is the momentum along (perpendicular to)

the Q as is shown in the bottom inset in Fig. 1. In the
presence of the frequency-dependent interaction and spi-
non self-energy, the sharp constraint is smeared out.
However, the dominant contribution of the momentum
integration still comes from the region jvFp0kj<p02?=2m,
which is denoted as the shaded area in the bottom inset in
Fig. 1. This has been checked by performing a numerical
integration of p00. Knowing the important region for p0, we
consider an approximate ansatz ��p0; p?; pk� �
~��p0; p?���p2

?=m� jvFpkj�, where we take the range
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FIG. 1 (color online). The largest eigenvalue of M�p; p0� as a
function of the system size L where the mesh of the discrete
energy and momentum is given by �k � 2�=L. Top
inset: Schematic picture of partial gapping of the spinon Fermi
surface. Bottom inset: Definition of pk and p?.
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of pk twice larger than jvFpkj< p2
?=2m in order to take

into account the smearing effect. This ansatz is singular at
the curve pk � p2

?=m, which includes the point pk �
p? � 0. A better treatment will smear out this singularity.
For this ansatz, the typical momentum transfer k � p0 � p
also satisfies the condition jkkj< k2

?=kF 
 k? and we can
ignore the kk dependence in the gauge propagator. We can
also replace jQ	 k̂j2=m2 by v2

F because k is almost
perpendicular to Q. We perform the kk integration in the
Eq. (6), and we obtain
 

E ~��p0; p?� �
vF
�2��3

Z
dk0

Z
dk?

jk?j

�ojk0j � �djk?j3

	
m

�k? � p?�2

	 ln
�
1�

8��k?�p?�
2

2m �2

��k?�p?�
2

2m �2 � 
2jk0 � p0j
4=3

�

	 ~��p0 � k0; p? � k?�: (7)

Here we use the simpler form of gauge propagator which is
obtained from Eq. (2) in the limit vFjkj � jk0j, and we
keep only the leading frequency-dependent term in the
spinon propagator. Therefore, the integration for the en-
ergy or momentum should be understood as having an
ultraviolet cutoff of the order of the Fermi energy or
momentum.

The right-hand side of Eq. (7) has a smooth and weak p0

dependence. Therefore, we ignore the p0 dependence in
the kernel and consider a frequency-independent eigenvec-
tor. The gauge propagator jk?j=��ojk0j � �djk?j3� is
sharply peaked at k? � ��ojk0j=�d�

1=3 as a function of
k? and can be approximated by a delta function
��o�

2
djk0j�

�1=3P
s��1	�k? � s��ojk0j=�d�

1=3�, and we
can perform the k? integration. Changing the integration
variable k0 by t � sj��o=�d�k0j

1=3, we obtain the eigen-
value equation
 

E ~��p?� � 6
mvF
�2��3�o

Z
dt

jtj

jt� p?j2

	 ln
�

1�
8jt� p?j4

jt� p?j4 � Ajtj4

�
~��t� p?�; (8)

where A � �2m
��d=�o�2=3�2 is a dimensionless constant.
If we consider the spinon pair right on the Fermi surface
(p? � 0) and use the ansatz ��p?� � const, the right-
hand side of Eq. (8) is logarithmically divergent. This
signifies that we can find an eigenvector which has an
arbitrarily large eigenvalue. However, the momentum-
independent ansatz cannot satisfy the eigenvalue equation
because the kernel strongly depends on p?. In view of the
singular dependence of the kernel on p?, we consider an
ansatz ~��p?� � ~�0�1=jp?j��, where � should be smaller
than 3=2 in order for the eigenvector to be normalizable.
This ansatz solves the eigenvalue equation with the eigen-
value E� �6=�2��2c� ln�1� 24c2=�3c2 � 1�� 1

� , where

c � �m �vF=mvF measures the local curvature of the Fermi
surface. For small enough �, the eigenvalue can be arbi-
trarily large. Thus, within the present mean field treatment
there is a pairing instability.

Now we check the validity of the analytic solution by
solving the eigenvalue equation numerically. We do not
assume a specific form of ��p� in Eq. (6). Then the natural
cutoff for the kk � pk � p

0
k

integration is k?, not k2
?=m,

because the coupling jQ	 k̂j2=m2 becomes small for
kk > k?. Ignoring the kk dependence of the gauge propa-
gator, we can cast the equation into a 2D integral equation
by applying

R
p?
�p?
�dpk=2��g�Q� p�g�Q� p� on both

sides of Eq. (6). The resulting equation involves only two
integrations, and one can easily diagonalize the kernel
M�p; p0� numerically to find the eigenvalue and the eigen-
vector. The largest eigenvalue corresponds to singlet pair-
ing (even �p) and as shown in Fig. 1 increases logarith-
mically with increasing L, where L determines the mesh of
the discrete energy and momentum as �k � 2�=L. The
eigenvalue will become larger than 1 for a large enough L,
and there exists pairing instability in the thermodynamic
limit. The infrared divergence of the eigenvalue in the
thermodynamic limit is consistent with the analytic result
that the eigenvalue diverges as�! 0. Although not shown
here, the numerically calculated eigenvector is qualita-
tively consistent with the analytic ansatz with �< 1. The
second largest eigenvalue corresponds to triplet pairing and
is also logarithmically divergent with a slope 10 times
smaller than that shown in Fig. 1. In the rest of the
Letter, we assume singlet pairing, even though we should
be mindful that triplet pairing is also unstable and may be
preferred by short range repulsion.

The origin of the mean field pairing instability should be
contrasted with conventional superconductors where elec-
trons with momenta p and �p form a pair, which uses the
whole Fermi surface to lower its energy. In the present
case, spinon pairs carry a momentum of the order of 2kF.
While the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state
also carries finite momentum [15], our case is fundamen-
tally different because pairing fermions on the same side of
the Fermi surface severely restricts the available phase
space. Consequently, the pairing instability found here
can happen only if the pairing interaction is sufficiently
singular. To see this, consider the scale trans-
formation p0 ! sp0, pk ! s2=3pk, and p? ! s1=3p?,
under which the measure of the energy-momentum inte-
gration goes as s2, the two Green’s functions s�4=3, and the
interaction s�2=3 in Eq. (7). This results in the logarithmic
divergence. If the interaction were less singular than s�2=3,
there would be no instability.

Now consider possible instabilities in the particle-hole
channel [16]. A mean field treatment similar to that above
reveals the existence of 2kF density wave instabilities in
both the singlet and triplet channels, albeit with nontrivial
momentum dependence for the internal wave function for
the particle-hole pair. We point out that the Amperean
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pairing is favored for large local curvature c, while the 2kF
instability prefers small c.

Theoretically, the mean field results above should be
regarded as merely suggestive of possible low temperature
instabilities of the spinon Fermi surface state. Lacking a
better theoretical treatment, we will take experiments as a
guide for further discussion.

The NMR measurement does not observe the line broad-
ening expected for the incommensurate spin density wave
[1,17]. Thus, we discard the triplet spinon density wave.
Since the singlet spinon density wave state preserves the
U(1) gauge structure, it will have a non-Fermi liquid
specific heat unless a further Amperean pairing instability
develops at low temperature to restore Fermi liquid behav-
ior (see below). However, in the latter case two separate
transitions would have been expected as a function of
temperature (for instance, as visible signatures in the spe-
cific heat) which is not observed. Therefore, we focus on
the scenario where only the spinon pairing occurs and
explore some consequences.

In the paired state, gaps will open on the patches of the
Fermi surface where the pairing occurs. The momentum
point at which the pairing instability first occurs depends
on the details of the Fermi surface. In general, there will be
a number of preferred points related by hexagonal symme-
try. Once the pairing occurs on parts of the Fermi surface,
the U(1) gauge group is reduced to Z2. Since the Z2 gauge
field is gapped, the low energy theory becomes the Fermi
liquid theory, and the remaining Fermi surface can remain
gapless without further instability. This is consistent with
the observation that there exists a finite specific heat coef-
ficient � in the zero temperature limit rather than the
singular T�1=3 behavior. The proposed spinon pair state
will generically break lattice translation, rotational, or even
time reversal symmetries. As shown in the top inset in
Fig. 1, suppose the pairing occurs at two distinct favored
momenta Q1 and Q2, with �1 and �2 the corresponding
pairing order parameters. These are, of course, not gauge-
invariant, but the gauge-invariant combination ��1�

���2� is
at nonzero momentum 2�Q2 �Q1� and is also condensed
as �1 and �2 are individually condensed. This represents a
spontaneous breakdown of lattice symmetry. As we are
discussing a spin system, this order corresponds to an
incommensurate version of the valence bond solid (spin
Peierls state). However, we emphasize that this broken
lattice symmetry state coexists with fractionalized spinons.
The broken lattice symmetry implies a finite temperature
phase transition. However, due to the incommensurate
ordering, the transition should be 2d X-Y-like and shows
no observable singularity in the specific heat. The transla-
tional symmetry breaking should couple to lattice distor-
tion and may be observable by x-ray scattering.

A key prediction is that the low temperature thermal
conductivity �� T like in a metal, in contrast to the
vanishing thermal conductivity expected in an Anderson

insulator or the enhanced �� T1=3 for the spinon Fermi
surface state with a gapless U(1) gauge field [9].

In contrast with BCS theory but in common with the
LOFF state, the Amperean pairing is not destroyed by the
Zeeman limiting field, because the spinon with up spin
with momentum jQ"j � jQj ��BH=vF and the spinon
with down spin with momentum jQ#j � jQj ��BH=vF
can both be on the Fermi surface and paired without the
energy cost of the Zeeman energy. This property is crucial
in explaining the lack of field dependence up to 8T in the
specific heat [5].

The spinon pairing state is not a superconductor, because
the spinon does not carry charge. However, if the charge
gap is suppressed by driving the system across the Mott
transition point with pressure [2], Bose condensation of the
charge degrees of freedom converts the Amperean pairing
state to a real superconductor. One signature of this un-
conventional superconductor is that the Knight shift will
hardly change across the transition temperature, which is
highly unusual for singlet pairing. This signature is con-
sistent with recent data [18].
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