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It is proved that many-particle Bohm trajectories can be computed from single-particle time-dependent
Schrödinger equations. From this result, a practical algorithm for the computation of transport properties
of many-electron systems with exchange and Coulomb correlations is derived. As a test, two-particle
Bohm trajectories in a tunneling scenario are compared to exact results with an excellent agreement. The
algorithm opens the path for implementing a many-particle quantum transport (Monte Carlo) simulator,
beyond the Fermi liquid paradigm.
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From a computational point of view, the direct solution
of the many-particle Schrödinger equation is inaccessible
for more than very few electrons. This issue is at the heart
of almost all the unsolved problems in quantum transport.
The standard solution to overcome this computational
barrier is assuming noninteracting (Fermi liquid) electrons
and decoupling the studies of transport from those of the
electronic structure (via the effective electron mass) [1].
Nowadays, ab initio many-particle quantum transport ap-
proaches, based on the density functional theory (DFT) [2],
are being developed [3] to surpass the previous
approximations.

In this Letter, we present an alternative approach, be-
yond the Fermi liquid paradigm, to study many-particle
quantum transport using Bohm trajectories [4,5]. Bohmian
mechanics was originally presented as an interpretative
tool, and it generated an intense debate about the ‘‘reality’’
of the trajectories [6]. Here, this issue becomes irrelevant
because Bohm trajectories (similarly to Feynman paths)
are used to reproduce the probabilistic results of standard
quantum mechanics. Following this point of view,
Bohmian mechanics has recently undergone a revival to
develop new quantum computational algorithms [7].

We study a system of N (spinless) electrons described by
a (first-quantization) many-particle wave-function, �� ~x; t�,
solution of the Schrödinger equation:
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where ~x � fx1; x2; . . . ; xNg � fxa; ~xbg is the vector of the
electron positions. For simplicity, we consider a 1D solid-
state system where the lattice-electron interaction is in-
cluded into the electron effective mass, m. The potential
energy U� ~x; t� takes into account the Coulomb interaction
among all electrons and the role of an external battery.

First, we summarize the basic many-particle de Broglie–
Bohm development [4,5,7,8]. Equation (1) can be split
into two (real) equations when the wave function is written
in polar form, �� ~x; t� � R� ~x; t� exp�iS� ~x; t�=@�. The real
part leads to the many-particle quantum Hamilton-Jacobi

equation:
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where the kinetic energy, Ka� ~x; t�, and the so-called quan-
tum potential energy, Qa� ~x; t�, associated with the xa elec-
tron are
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Equations (2) and (3) provide a definition of the velocity
va� ~x; t� for the electron labeled by the variable xa.
Therefore, a trajectory, xa�t�, can be computed from
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The vector ~x�t� � fx1�t�; . . . ; xN�t�g � f ~xa�t�; ~xb�t�g con-
tains the N Bohm trajectories. We omit the dependence
of each trajectory on its particular initial position, xa�to�.
On the other hand, the imaginary part of Eq. (1) leads to a
continuity equation:
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Equation (5) guarantees that, at any time t, the observable
results can be exactly computed from Bohm trajectories
[4,5,8]. The only requirement is that the trajectories have to
reproduce R2� ~x; to� � j�� ~x; to�j2 at one initial time, to, and
move according to (4). Next, we demonstrate the main
result of this Letter.

Theorem.—Any trajectory xa�t� that belongs to a par-
ticular set of N Bohm trajectories ~x�t� � fxa�t�; ~xb�t�g as-
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sociated with a many-particle wave-function �� ~x; t� solution of Eq. (1) with U� ~x; t� � Ua�xa; ~xb; t� �Ub� ~xb; t� can be
obtained from a single-particle wave function �a�xa; t�. This wave function is a solution of the following single-particle
Schrödinger equation:
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Proof.—First, we define the single-particle wave func-
tion, �a�xa; t� � ra�xa; t� exp�isa�xa; t�=@� from the many-
particle wave function �� ~x; t� evaluated at fxa; ~xb�t�g.
In particular, we define ra�xa; t� � R�xa; ~xb�t�; t� and
sa�xa; t� � S�xa; ~xb�t�; t�. From this definition, it is quite
simple to realize that the same velocity (trajectory xa�t�) is
obtained either using �a�xa; t� or �� ~x; t� in (4). Second,
we show that �a�xa; t� is generated by the following
single-particle (complex) potential energy: ua�xa; t� �
Ua�xa; ~xb�t�; t� � Ga�xa; ~xb�t�; t� � iJa�xa; ~xb�t�; t�. By
rewriting a single-particle Schrödinger equation, the
potential profile can be identified as ua�xa; t� �
�i@@�a�xa; t�=@t � �@

2=2m�@2�a�xa; t�=@x
2
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when �a�xa; t� � 0 and ua�xa; t� � 0 otherwise. The
real part of ua�xa; t�, written in polar form, leads to
Re�ua�xa; t�� � �@sa�xa; t�=@t � mv2
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rewritten in terms of R�xa; ~xb�t�; t� and S�xa; ~xb�t�; t�,
together with the Hamilton-Jacobi Eq. (2) evaluated at
fxa; ~xb�t�g, the terms Ua�xa; ~xb�t�;t��Ga�xa; ~xb�t�;t� are
obtained. The imaginary part of ua�xa; t� leads to
Im�ua�xa; t�� � @=�2r2
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va�xa; ~xb�t�; t��=@xag. When this result is rewritten in terms
of R�xa; ~xb�t�; t� and S�xa; ~xb�t�; t�, together with the con-
tinuity Eq. (5), expression (6c) evaluated at fxa; ~xb�t�g is
obtained. Q.E.D.

In the rest of the Letter, we explain two practical algo-
rithms to compute N-particle Bohm trajectories without
knowing the N-particle wave function, �� ~x; t�, but using
the previous theorem. Our algorithms have similarities
with the original work of Kohn and Sham on the DFT
[2]: the formidable simplification on the many-particle
computations [9] comes at the price that some terms of
the potential energy of the corresponding single-particle
Schrödinger equations are unknown [the exchange-
correlation functional in the DFT and, here, the terms
(6b) and (6c)].

First algorithm.—We consider a system of N electrons
with Coulomb interaction but without exchange inter-
action. As mentioned, the solution of Eq. (6a) needs
educated guesses for the terms (6b) and (6c). Since no
exchange interaction is considered, the correlation be-

tween the xa electron and the rest is mainly contained in
the term Ua�xa; ~xb�t�; t�. Thus, we can assume a zero-order
Taylor expansion of the terms (6b) and (6c) in the vari-
able xa around xa�t� to obtain Ga�xa; ~xb�t�; t� 

Ga�xa�t�; ~xb�t�; t� and Ja�xa; ~xb�t�; t� 
 Ja�xa�t�; ~xb�t�; t�.
Later, we will check this approximation. Then, the
wave-function solution of (6a) can be written as
�a�xa; t� 
 ~�a�xa; t� exp��a�t�=@� i�a�t�=@� where
�a�t� �
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~�a�xa; t� is the solution of Eq. (6a) with ua�xa; t� �
Ua�xa; ~xb�t�; t�. Since the velocity in (4) does not depend
on the terms �a�t� and �a�t�, we do not have to compute
them explicitly. We fix the initial many-particle wave
function in Eq. (1) as a product of single-particle wave
functions, �� ~x; to� � �1�x1; to� � � ��N�xN; to�. Then, the
initial boundary condition for solving ~�a�xa; t� is just
~�a�xa; to� � �a�xa; to�.

As a test, we consider a two-particle system ~x � fx1; x2g
in a triple barrier AlxGa1�xAs=InxGa1�xAs structure
(which can be a rich mesoscopic scenario for resonant
tunneling and Coulomb blockade) with 0.526 eV barriers
and a relative electron effective mass equal to 0.078 (see
insets of Fig. 1). We control the strength of the Coulomb
interaction by the lateral area, A, as described in Ref. [10].
The initial wave function, at to � 0, is a product of two
Gaussian wave packets, �1�x1; to� and �2�x2; to�, whose
central kinetic energies and positions are 0.180 eV and
�62 nm for the first, and 0.225 eV and �75 nm for the
second. The spatial dispersion is 25 nm for both. The exact
two-particle Bohm trajectories ~x�t� � fx1�t�; x2�t�g are
computed using (4) after solving Eq. (1) numerically (see
the 2D Bohm trajectories in Fig. 1). Alternatively, the
Bohm trajectories are also computed by solving Eq. (6)
with u1�x1; t� � U1�x1; x2�t�; t� and ~�1�x1; to� � �1�x1; to�
for x1�t�, and u2�x2; t� � U2�x1�t�; x2; t� and ~�2�x2; to� �
�2�x2; to� for x2�t�, simultaneously (see the 1D Bohm
trajectories in Fig. 1). Figure 1 show the excellent agree-
ment between exact Bohm trajectories and those computed
within our algorithm [9]. In Fig. 1(a), the lateral area A is
so large that it makes the Coulomb interaction quite neg-
ligible [10]. The first electron is transmitted while the

PRL 98, 066803 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 FEBRUARY 2007

066803-2



second is reflected. However, in Fig. 1(c) the smaller lateral
area provides a strong Coulomb interaction between the
electrons and the second is finally transmitted because of
the ‘‘presence’’ of the first one in the barrier region.

Second algorithm.—We generalize the first algorithm to
arbitrary systems with Coulomb and exchange interac-
tions. Since the symmetry of the many-particle wave func-
tion is a constant of motion, we introduce the exchange
interaction into the initial wave function. We define
�� ~x; to� as a Slater determinant:

 � � ~x;to��C
XN!

l�1

�p�l�1�x1;to�����p�l�N �xN;to�s� ~p�l��; (7)

C being a normalization constant. The sum is over all N!
permutations ~p�l�� fp�l�1;p�l�2; . . . ;p�l�Ng and s� ~p�l�� �
�1 is the sign of the permutations.

Because of the Pauli exclusion principle, the modulus of
the wave function tends to zero, R�xa; ~xb�t�; t� ! 0, every
position where xa ! xk�t�. Thus, the term Ga�xa; ~xb�t�; t�
has asymptotes at xa ! xk�t�. Therefore, when the ex-
change interaction is present, the simplification done in
the first algorithm, Ga�xa; ~xb�t�; t� 
 Ga�xa�t�; ~xb�t�; t�, is
inaccurate. However, by the linearity of Eq. (1), the
many-particle wave function subjected to the initial
condition (7) can be written everywhere as �� ~x; t� �
C
PN!
l�1 � ~p�l�� ~x; t�s� ~p�l�� where each wave function

� ~p�l�� ~x; t� has no exchange symmetry and it can be com-
puted following the first algorithm. Therefore, for each
summand and each xa electron, we can compute
� ~p�l��xa; ~xb�t�; t� 
 ~�a; ~p�l��xa; t� exp�za; ~p�l��t�� with
za; ~p�l��t���a; ~p�l��t�� i�a; ~p�l��t�. The wave function
~�a; ~p�l��xa; t� is the solution of Eq. (6a) with ua�xa; t� �
Ua�xa; ~xb�t�; t� when the initial boundary condition is

~�a; ~p�l��xa; to� � �p�l�a�xa; to�. Therefore, the many-
particle wave function at fxa; ~xb�t�g is ��xa; ~xb�t�; t� 
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~�a; ~p�l��xa; t� exp�za; ~p�l��t��s� ~p�l��. Here, the phases
za; ~p�l��t� are relevant. The permutations ~p�l� and ~p�l0�, with
p�l�a � p�l0�a, leads to an identical wave function
~�a; ~p�l��xa; t� � ~�a; ~p�l0��xa; t� � ~�a;j�xa; t�, where j �
p�l�a � p�l0�a. Therefore, we can write ��xa; ~xb�t�; t� 

C0
PN
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~�a;j�xa; t�wa;j�t� where we have merged the N!

unknowns, exp�za; ~p�l��t��, and s� ~p�l�� into only N values
wa;j�t�. In fact, since a global time-dependent constant on
the many-particle wave function has no effect on the Bohm
velocity (4), only N � 1 values of wa;j�t� are needed.
Because of the Pauli exclusion (i.e., ��xa; ~xb�t�; t� � 0
for xa � xk�t� with k � a), we obtain N � 1 conditions
for finding wa;j�t�, i.e.,

PN
j�1

~�a;j�xk�t�; t�wa;j�t� � 0 for
k � a. A straightforward solution of the previous system
of N � 1 equations leads to the wave function:
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XN!

j�1
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	 s� ~p�j��: (8)

Thus, the computation of ~x�t� � fx1�t�; . . . ; xN�t�g will re-
quire finding N2 different single-particle wave functions,
simultaneously, using (6). Figure 2 shows the excellent
agreement between the exact Bohm trajectories and those
computed from this second algorithm using the same initial
Gaussian wave packets of Fig. 1.

In order to clarify the meaning of indistinguishable
particles in the Bohmian language, in Fig. 3 we simulate
Bohm trajectories with two particular initial positions and
with interchanged initial positions (primes) for the two
electrons of Fig. 2(b). By the own construction of the
wave function (8), x01�t� � x2�t� and x02�t� � x1�t�.

 

FIG. 1 (color online). Two-particle Bohm trajectories with
Coulomb interaction in a triple barrier tunneling scenario com-
puted from our 1D approach (symbols) and from exact 2D
results (solid lines) for three different lateral areas that modifies
the Coulomb interaction.
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FIG. 2 (color online). Two-particle Bohm trajectories with
Coulomb and exchange interactions computed from our 1D
approach (symbols) and from 2D exact results (solid lines) for
three lateral areas.
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Therefore, although we can distinguish each electron by its
own trajectories, one cannot discern between fx1�t�; x2�t�g
and fx01�t�; x

0
2�t�g in the observable results. For example,

the number of events where x1�t� is transmitted and x2�t� is
reflected is exactly identical to the events where x2�t� is
transmitted while x1�t� reflected. As seen in Fig. 3, this
symmetry is broken without exchange interaction.

For N > 2, we can estimate the accuracy of our first al-
gorithm by computing dGa�xa; ~xb�t�; t�=dxa at xa � xa�t�
for N � 1 two-electron systems, fx1; x2g; . . . ; fx1; xNg, and
adding the values. Let us recall that the second algorithm
generalizes the first one without any additional approxima-
tion but computing N2 wave functions. In Fig. 4, we see
that the error increases for very small lateral areas (i.e.,
very strong interactions). This explains the minor diver-
gences in Figs. 1(c) and 2(c). On the contrary, due to the

random nature of dGa�xa; ~xb�t�; t�=dxa (i.e., the correla-
tions are already considered in the algorithms), the error
remains roughly equal when N increases.

The work presented here shows the path for a power-
ful and versatile many-particle quantum transport
(Monte Carlo) formalism. The quantum fluctuations of
the current can be directly computed, without additional
cost, because Bohm trajectories describe the transmission
and reflection process as two mutually exclusive events
[11]. Since the algorithm deals with time-dependent
Schrödinger equations, the many-electron transmission
probabilities can be computed for zero or high frequencies,
under static or time-dependent external bias [12].

This work was supported through Spanish MEC Project
No. TEC2006-13731-C02-02/MIC.
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FIG. 3 (color online). Four realizations of two-particle Bohm
trajectories interchanging the initial positions with (squares) or
without (circles) exchange interaction.

 

FIG. 4 (color online). Estimation of the error of the first
algorithm for different number N of electrons (with arbitrary
initial conditions) and three different areas.
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