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Because of Klein tunneling, electrostatic potentials are unable to confine Dirac electrons. We show that
it is possible to confine massless Dirac fermions in a monolayer graphene sheet by inhomogeneous
magnetic fields. This allows one to design mesoscopic structures in graphene by magnetic barriers, e.g.,
quantum dots or quantum point contacts.
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The successful preparation of monolayer graphene films
[1–3] has recently generated a lot of excitement and allows
one to directly probe the physics of two-dimensional (2D)
Dirac-Weyl fermions. The massless Dirac spectrum at low-
energy scales is caused by the sublattice structure (the basis
of graphene’s honeycomb lattice contains two carbon
atoms, giving rise to an isospin degree of freedom), com-
bined with a special band structure, and has been verified
experimentally [1,2,4]. Besides the fundamental interest,
graphene has also been suggested as a building block for
future nanoelectronic devices [3]. However, there is an
interesting twist at that point, since Dirac fermions cannot
immediately be confined by electrostatic potentials. In
marked contrast to the Schrödinger case, Dirac fermions
can penetrate high and wide electrostatic barriers with high
transmission probability, in particular, for normal inci-
dence. This is often referred to as Klein tunneling [5] and
can be understood by noting that under the barrier, the
whole spectrum is shifted upwards. Incoming electronlike
quasiparticles can then efficiently tunnel through the bar-
rier via empty states in the hole band, which are always
available since the Dirac spectrum is unbounded. In the
context of carbon nanotubes and graphene, this effect was
theoretically studied in Refs. [6–8]. The creation of useful
mesoscopic structures, e.g., quantum dots or quantum
point contacts, thus seems to encounter a major and fun-
damental obstacle, seriously limiting graphene’s potential
for applications.

An obvious but rather crude way out of this dilemma is
to mechanically cut samples into the desired shape.
Alternatively, one could attempt to exploit the fact that
suitable transverse states in a graphene strip may allow one
to circumvent Klein tunneling [9]. Here, we describe a
completely different and hitherto unnoticed way of confin-
ing Dirac-Weyl quasiparticles in graphene by magnetic
barriers. Employing existing technology, the required in-
homogeneous static magnetic field configurations can be
created using ferromagnetic layers located beneath the
substrate on which the graphene layer is deposited; for
other possibilities, see Ref. [10]. Mesoscopic transport
with magnetic barriers has been experimentally studied
for the Schrödinger fermions realized in conventional

semiconductor heterostructures, e.g., transport in the pres-
ence of magnetic barriers [11] and superlattices [12], mag-
netic edge states close to a magnetic step [13], and
magnetically confined quantum dots or antidots [14].
Correspondingly, apart from one study of magnetic edge
states in narrow-gap semiconductors [15], model calcula-
tions have only been carried out for Schrödinger fermions
[10,16–18]. Here, we formulate the theory of magnetic
barriers and magnetic quantum dots for the massless Dirac-
Weyl fermions in graphene. With minor modifications, the
theory also covers narrow-gap semiconductors.

We focus on a static orbital magnetic field [19] oriented
perpendicular to the graphene (x-y) plane, B � B�x; y�êz,
and work on the simplest possible theory level (no disorder,
no interactions), where the electronic spin degree of free-
dom can be disregarded. Moreover, we consider the physi-
cally relevant case of slow B�x; y� variations on the scale of
the graphene lattice spacing (a � 0:246 nm). On low-
energy scales, a weakly doped (or undoped) graphene layer
is described by two identical copies of the Dirac
Hamiltonian, which remain decoupled in the presence of
smoothly varying magnetic fields [20]. These two copies
describe low-energy envelope states in the k � p approach
[21] close to the two relevant K points in the hexagonal
first Brillouin zone of graphene. For slowly varying B �
rotA, we therefore need to study just one K point. The
time-independent Dirac equation for the spinor  �x; y� �
� �;  ��T at energy E � vF� then reads (we put @ � 1)

 ~� � �p�
e
c

A�x; y�� �x; y� � � �x; y�; (1)

where the Fermi velocity is vF 	 8
 105 m= sec, the
momentum operator is p � �i�@x; @y�T , and the 2
 2
Pauli matrices in ~� � ��x; �y� act in isospin space. The
velocity operator follows from the Heisenberg equation as
v � vF ~�. In this Letter, we discuss two prime examples of
interest based on the Dirac-Weyl Hamiltonian in Eq. (1),
namely, (i) the magnetic barrier and (ii) a circularly sym-
metric magnetic quantum dot.

For a magnetic barrier, the relevant physics is described
by a magnetic field translationally invariant along the (say)
y-direction, B�x; y� � B�x�. Choosing the vector potential
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in the gauge A�x; y� � A�x�êy with @xA�x� � B�x�, trans-
verse momentum py is conserved, and for given py, Eq. (1)
leads to the coupled equations

 �@x � py � �e=c�A�x�� ��x� � i� ��x�: (2)

These equations imply the decoupled 1D ‘‘Schrödinger’’
equations

 �@2
x � V��x� � �

2� ��x� � 0; (3)

with the py-dependent effective potentials

 V��x� � ��e=c�@xA�x� � �py � �e=c�A�x��
2: (4)

Let us then describe the solution of Eq. (3) for a square-
well magnetic barrier, where B � B0êz (with constant B0)
within the strip �d  x  d, but B � 0 otherwise,

 B�x; y� � B0��d
2 � x2� (5)

with the Heaviside step function �. The sharp-edge form
(5) is appropriate when the Fermi wavelength �F is para-
metrically larger than the edge smearing length �s, while
�s � a to ensure smoothness of B; otherwise, scattering
between the two K points takes place [22]. Note that here,
�F � 1=j�j is determined by the (inverse) Fermi momen-
tum of the Dirac quasiparticles, which is measured relative
to the relevant K point, and the large momentum scale
associated with the K point itself drops out completely.
With the magnetic length lB �

�������������
c=eB0

p
, the vector poten-

tial is written as

 A�x� �
c

el2B



8><>:
�d; x <�d
x; jxj  d
d; x > d

: (6)

Consider now an electronlike scattering state (� > 0) enter-
ing from the left side, with incoming momentum p �
�px; py�. The incoming wave function is, up to an overall
normalization,

  in�x� �
1

px�i�py�d=l2B�
jpj

 !
eipxx;

where the shift in py is due to our gauge choice for the
vector potential. It is then convenient to parametrize the
momenta as

 px � � cos�; py � � sin�� d=l2B: (7)

The gauge-invariant velocity is v � vF�cos�; sin��T , and
therefore � is the kinematic incidence angle. The emer-
gence angle �0 at the right barrier, p0x � � cos�0, is ob-
tained by exploiting conservation of py,

 sin�0 �
2d

�l2B
� sin�: (8)

Up to an overall normalization factor, the scattering state in
the three regions is as follows. For x <�d,

  I�x� �
1
ei�

� �
eipxx � r

1
�e�i�

� �
e�ipxx; (9)

with �-dependent reflection amplitude r. In the barrier
region jxj  d, the solution is expressed in terms of para-
bolic cylinder functions D� [23],

  II �
X
�

c�
D��lB�2=2�1��

���
2
p
�x=lB � pylB��

�i
��
2
p

�lB
D��lB�2=2��

���
2
p
�x=lB � pylB��

 !
(10)

with complex coefficients c�. Finally, for x > d, the trans-
mitted wave is

  III�x� � t
�������������
px=p

0
x

q
1
ei�

0

� �
eip

0
xx (11)

with transmission amplitude t. The transmission probabil-
ity T � jtj2 is then related to the reflection probability R �
jrj2 by T � R � 1. Note that Eq. (8) implies that for certain
incidence angles �, no transmission is possible. In fact,
under the condition

 �lB  d=lB; (12)

every incoming state is reflected, regardless of the inci-
dence angle �. In essence, all states with cyclotron radius
(defined under the magnetic barrier) less than d will bend
and exit backwards again. This illustrates our main finding:
in contrast to electrostatic barriers, magnetic barriers are
able to confine Dirac-Weyl quasiparticles. For sufficiently
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FIG. 1 (color online). Polar graphs depicting the transmission
probability T��� for a magnetic barrier of width 2d at various
energies �. The outermost semicircle corresponds to T � 1, the
center to T � 0, with grid spacing 0:2. Angles between ��=2
and ��=2 are shown; the angular grid spacing is �=6. (a) T as
function of barrier width for fixed energy, �lB � 3:7. For d=lB �
3:7, the transmission is zero for all �. (b) Same as function of �
for d=lB � 1:5. The transmission vanishes for �lB  1:5.
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large barrier width 2d and/or field B0, all relevant states
will be reflected. Our analysis also shows that this con-
clusion is generic and does not depend on the particular
choice (5) for the barrier.

If the condition (12) is not obeyed, the transmission
probability T does not vanish in general. Its value follows
by enforcing continuity of the wave function at x � �d.
The solution of the resulting linear algebra problem yields
the transmission amplitude in closed form,
 

t �
2i�lB

����������������
2p0x=px

p
cos�

ei�px�p
0
x�dD

�u�2 v
�
2 � v

�
2 u
�
2 �;

D � ��lB�
2ei��

0����u�1 u
�
2 � u

�
2 u
�
1 � � 2�v�1 v

�
2 � v

�
2 v
�
1 �

� i
���
2
p
�lB�e

i�0 �v�1 u
�
2 � u

�
2 v
�
1 �

� e�i��u�1 v
�
2 � v

�
2 u
�
1 ��; (13)

where we use the shorthand notation
 

u�1 � D��lB�2=2�1��
���
2
p
��d=lB � pylB��;

v�1 � D��lB�2=2��
���
2
p
��d=lB � pylB��:

The related symbols u�2 , v�2 follow by letting �d! d.
The resulting transmission probability T��� � jtj2 is
shown in Fig. 1 for several parameter values (�, d) outside
the perfectly reflecting regime specified in Eq. (12). For a
typical value of B0 � 4 T, the magnetic length is lB �
13 nm, and �lB � 1 corresponds to E � 44 meV.
Standard fabrication and doping techniques should thus
be sufficient to enter the perfect reflection regime. On the
other hand, for sufficiently high energy and/or narrow
barriers, the �-dependent transmission profile in Fig. 1
should be observable.

We now turn to a discussion of a circularly symmetric
magnetic quantum dot, defined by a radially inhomogene-
ous field B � B�r�êz. It is convenient to use complex
variables z � x� iy (not to be confused with the
z-direction) and �z � x� iy, and the corresponding deriva-
tives @ � 1

2 �@x � i@y� and �@ � 1
2 �@x � i@y�, where r ������

�zz
p

. Writing in a similar manner A � Ax � iAy and �A �
Ax � iAy, the magnetic field is B�r� � �i�@A� �@ �A�,
where �e=c�A � i’�r�=�z and �e=c� �A � �i’�r�=z. This
gauge expresses the vector potential in terms of the mag-
netic flux ’�r� through a disc of radius r in units of the flux
quantum hc=e,

 ’�r� �
e
c

Z r

0
dr0r0B�r0�: (14)

Next, we recall that in 2D, the group of rotations is
SO�2� �U�1�, whose generator is the orbital angular mo-
mentum operator L � z@� �z �@ , with eigenfunctions �zm

(integer m). For an isotropic field B�r�, the operator J �
L� �z=2 is conserved, i.e., eigenstates of Eq. (1) are
classified by the half-integer eigenvalue j � m� 1=2 of J,

 

 �
 �

� �
�

1�������
2�
p

�m�r��z=r�m

�m�r��z=r�m�1

� �
: (15)

The Dirac Eq. (1) then reduces to a pair of radial 1D
equations for �m�r� and �m�r� (where r > 0 and f0 �
df=dr),
 

�0m �
m� ’�r�

r
�m � i��m;

�0m �
m� 1� ’�r�

r
�m � i��m;

(16)

implying a second-order equation for the upper component
of Eq. (15),

 �00m �
1

r
�0m �

�
�2 �

e
c
B�r� �

�m� ’�r��2

r2

�
�m � 0;

(17)

plus a similar equation for �m�r�. For � � 0, �m directly
follows from �m via Eq. (16).

We now analyze a simple model for a magnetic quantum
dot, where B � B0 outside a disk of radius R and zero
inside, as previously considered for Schrödinger fermions
in Ref. [24]. The flux (14) is with lB �

�������������
c=eB0

p
given by

 ’�r� �
r2 � R2

2l2B
��r� R�: (18)

With normalization constant N m and m  0, the states

  ��0
m �N m

r
R

� �
��r�R�R2=2l2B

e�’�r�=2 0
�z=r2�m

� �
represent zero-energy solutions of Eq. (1). The remaining
eigenspectrum comes in pairs��, and we focus on the � >
0 sector. Up to an overall normalization factor, Eq. (17)
implies Bessel function solutions inside the dot, �<

m �
Jm��r� for r < R. The general solution �> outside the
dot (r > R) involves the degenerate hypergeometric func-
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FIG. 2 (color online). Low-energy eigenenergies (labeled by
m) for a disklike magnetic quantum dot in graphene versus
missing flux 	 � R2=2l2B.
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tions � and � [23]. With 
 � r2=2l2B and ~m � m� 	,
where 	 � R2=2l2B is the missing flux through the dot, we
obtain
 

�>
m � 
j ~mj=2e�
=2�a1���; 1� j ~mj; 
�

� a2���; 1� j ~mj;
��: (19)

Here, a1;2 are arbitrary complex coefficients, and energy is
parameterized by

 � � 1� ~m�� ~m� � ��lB�
2=2: (20)

Continuity of  �r� at r � R now implies continuity of both

�m�r� and�0m�r�, see Eq. (16). The resulting two matching
conditions then determine the possible eigenstates.

Note that the well-known relativistic Landau levels (for
R � 0) correspond to � � �n (with n � 0; 1; 2; . . . ) [20],
where � and � reduce to Laguerre polynomials. For finite
R, the matching problem does not admit solutions with
� � �n, and we thus consider � � �n. However, for
� � �n, � has the asymptotic behavior �� e
 at 
!
1; i.e., normalizability of  necessarily requires a1 � 0
in Eq. (19). One of the two conditions then fixes a2, and
the other determines the quantization condition on the
energy,

 1� j ~mj��� ~m�=	�
�lB������
2	
p

Jm�1��lB
������
2	
p
�

Jm��lB
������
2	
p
�
�

d
d


ln���; 1� j ~mj; 
 � 	�: (21)

The numerical solution of Eq. (21) is possible using stan-
dard root finding methods (bracketing and bisection). In
Fig. 2, we show the solutions to Eq. (21) with � > 0 but
below the lowest positive-energy bulk Landau level located
at �lB �

���
2
p

. Within the shown 	 range, form � 0, there is
at most one solution with 0< �lB <

���
2
p

, while for m � 0,
we obtain two such solutions for 	 * 4. Depending on the
missing flux 	� R2B0, the energy levels of this ‘‘Dirac
dot’’ can be tuned almost at will.

To conclude, we have described a new way of confining
Dirac-Weyl quasiparticles in graphene. We hope that our
work will guide experimental efforts to the development of
mesoscopic structures based on this novel material and
stimulate more theoretical work on the effects of magnetic
barriers on Dirac fermions.
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discussions. This work was supported by the SFB TR 12 of
the DFG and by the ESF network INSTANS.

[1] K. S. Novoselov et al., Science 306, 666 (2004); Nature
(London) 438, 197 (2005).

[2] Y. Zhang, Y. W. Tan, H. Stormer, and P. Kim, Nature
(London) 438, 201 (2005).

[3] C. Berger et al., Science 312, 1191 (2006).
[4] S. Y. Zhou et al., Nature Phys. 2, 595 (2006).
[5] For a pedagogical review, see A. Calogeracos and

N. Dombey, Contemp. Phys. 40, 313 (1999).
[6] T. Ando, T. Nakashini, and R. Saito, J. Phys. Soc. Jpn. 67,

2857 (1998).
[7] V. V. Cheianov and V. I. Falko, Phys. Rev. B 74, 041403

(2006).
[8] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature

Phys. 2, 620 (2006).

[9] P. G. Silvestrov and K. B. Efetov, Phys. Rev. Lett. 98,
016802 (2007).

[10] S. J. Lee, S. Souma, G. Ihm, and K. J. Chang, Phys. Rep.
394, 1 (2004).

[11] M. Johnson, B. R. Bennett, M. J. Yang, M. M. Miller,
and B. V. Shanabrook, Appl. Phys. Lett. 71, 974 (1997);
V. Kubrack et al., J. Appl. Phys. 87, 5986 (2000).

[12] H. A. Carmona et al., Phys. Rev. Lett. 74, 3009 (1995);
P. D. Ye et al., ibid. 74, 3013 (1995).

[13] A. Nogaret, S. J. Bending, and M. Henini, Phys. Rev. Lett.
84, 2231 (2000).

[14] K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G.
Cornelissens, F. M. Peeters, and J. C. Maan, Phys. Rev.
B 65, 233312 (2002).
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