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Experimental results obtained over more than a century have shown that laminar flow in a circular pipe
becomes naturally turbulent at a critical Reynolds number of Re � 2000. In this Letter a theoretical
explanation, based on the minimum energy of an axisymmetric deviation (from the developed pipe flow
profile), is suggested for this critical value. It is shown that for Re> 1840 the minimum energy of the
deviation, associated with the central part of the pipe, becomes a global minimum for triggering secondary
instabilities. For Re< 1840 the global minimum energy deviation is located next to the pipe wall.
Previous experimental observations support this explanation.

DOI: 10.1103/PhysRevLett.98.064503 PACS numbers: 47.20.Ky, 47.20.Ft, 47.20.Lz, 47.27.nf

Transition from laminar to turbulent flow in a pipe has
been investigated in many studies since the first known
experiments by Reynolds [1] (1883). In his experiments
Reynolds observed that transition depended on a dimen-
sionless quantity, the Reynolds number Re � 2 �WR=�,
based on the average (bulk) velocity �W, the pipe radius R
and the kinematic viscosity �. For values of Re above �
2000 transition was observed. However, when inlet distur-
bances were avoided transition could be delayed for Re up
to 13 000. In more carefully controlled experiments the
Reynolds number for which transition occurs can reach
values as high as 105 [2]. According to linear stability
analysis, the developed pipe flow profile is known to be
stable for all Reynolds numbers [3–5].

Nevertheless, in many experiments preformed since the
known experiment by Reynolds, transition to turbulence
has been observed in the range 1800< Re< 2300. In
these experiments either the upstream flow conditions
were not carefully controlled, or sufficiently large distur-
bances were artificially introduced to the flow (e.g., see
Refs. [6–10]). Thus, the Reynolds number of �2000 has
been referred to in the literature as the ‘‘critical’’ Reynolds
number (Recr) for a ‘‘natural‘‘ transition in pipe flows.
Since the linear stability theory, based on infinitesimal
disturbances, fails to predict instability, the critical
Reynolds number may be theoretically predicted only by
introducing finite amplitude disturbances into the flow.
Attempts to predict transition by finite amplitude sta-
bility have been done in the past (e.g., Refs. [11,12]).
Recently finite amplitude solutions of traveling waves
have been found to exist in pipe flow for Re> Recr �
1250 [13,14], and have been observed in experiments
[15]. This Recr, however, is far from the one known for a
natural transition (such low critical numbers were experi-
mentally observed by considering effects of neutrally
buoyant suspended particles [16]). To the best of our
knowledge a prediction of the known Recr � 2000, based
on the instability of finite amplitude perturbations, is ab-
sent in the literature.

In this Letter we study the onset of instability of finite
amplitude axisymmetric optimal deviations added to the

developed pipe flow. The concept of distorting a linearly
stable flow by adding finite amplitude deviations to the
velocity profile has been used previously for viscous shear
flows [17] and for an inviscid free shear flow [18]. The
theory of optimal deviations leading to instability of plane
channel flows has been presented recently by Bottaro et al.
[19] and later by Biau and Bottaro [20]. Gavarini et al. [21]
used this theory to investigate the spatial instability of pipe
flows. In the following we, in fact, employ the mathemati-
cal method introduced by the latter authors. Through a
careful examination of the nonlinear features of this prob-
lem we reveal a critical Reynolds number of 1840 associ-
ated with the bifurcation between two deviation solutions.
This result suggests a possible explanation for the well
known critical value for a natural transition to turbulence.
Some experimental evidence supporting this outcome is
discussed.

The analysis begins with introducing the linearized
Navier-Stokes and the continuity equations for small dis-
turbances in an incompressible fluid. A cylindrical coor-
dinate system is used, in which r, �, and z are the radial,
azimuthal, and axial directions, respectively. The equations
are solved in nondimensional form, using the centerline
base-flow velocity and the pipe radius as characteristic
scales, for the base flow of the form W � 1� r2. The
disturbance is assumed to be of the form fu�r�; v�r�;
w�r�; p�r�g expfi��z� n��!t�g, where u, v, and w are
the velocities in r, �, and z directions, respectively, p is the
pressure, � and n are, respectively, the axial and azimuthal
wave numbers, and ! is the complex frequency. The
equations, together with boundary conditions, constitute
an eigenvalue problem for the eigenvalues ! and corre-
sponding eigenfunctions fu; v; w; pg.

Following Gavarini et al. [21], we introduce a variation
�W in the base-flow profile which results in variations �!
in the eigenvalue and f�u; �v; �w; �pg in the eigenfunc-
tions. A variational system is then obtained (see mathe-
matical details in Ref. [22] or in Ref. [21] for spatial
analysis). The inner product between the variational sys-
tem and the adjoint solution of the eigenvalue problem
yields
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where the subscript a denotes adjoint eigenfunctions,
� denotes complex conjugate terms, and GW is given by

 GW � i��v�au� w
�
av� p

�
aw� �

1

r
d
dr
�rp�au�: (2)

Equation (1) is used to find the optimal deviations (the
minimum energy deviations added to the base flow and
lead to the onset of secondary growing waves). For this
purpose a constraint on the magnitude of the deviation
�W � W � �1� r2� is expressed by the norm [21]:

 

Z 1

0
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The resulting problem can be reduced to an unconstrained
one, by introducing the Lagrange multiplier �. The func-
tional to be maximized is then F � !i � ��

R
1
0 r�W

2dr�
��, and the condition for optimum is

 �F � �!i � 2�
Z 1

0
r�W�Wdr � 0: (4)

Substituting the imaginary part of �! from (1) into (4)
results in a relation which must hold for an arbitrary
variation �W. Thus, the optimal deviation is

 �W � �
1

2�
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R
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where the plus sign corresponds to a maximization.
The function real�ĜW� depends on the base flow W and

therefore the deviation �W is solved iteratively by em-
ploying the algorithm:

 �Wj�1 � �Wj ��
�

�Wj �
real�Ĝj�1

W �

2�j�1

�
; (6)

where the superscript j denotes the iteration number and �
is a relaxation parameter. Convergence is reached when
the error

R
1
0 r��W

j�1��Wj�2dr is sufficiently small
(�10�8). The numerical solution of the eigenvalue prob-
lem is obtained by the Chebyshev collocation technique,
using 80 polynomials.

The above iterative procedure can be used to find opti-
mal base-flow deviations for any Re, n, �, and �. For a
specified set of parameters, different functions GW can be
computed with (2), corresponding to different eigenvalues
! of the parabolic profile. Thus, different functions �W
can be obtained with (5). However, by employing the linear
analysis outlined in Eqs. (1)–(5) the resulting solutions are
accurate only for infinitesimal deviations. For finite ampli-
tude deviations the iterative procedure in Eq. (6) is em-
ployed, where the functions �W obtained directly from the
parabolic profile may be used as initial guesses. For a
sufficiently large � only one deviation solution exists.
When � is decreased two solutions may be found (as a
result of a bifurcation). As � is further decreased, more

bifurcations lead to multiple deviation solutions. In the
limit of an infinitesimal � infinite number of optimal
deviations exists, corresponding to the infinite number of
the parabolic profile eigenmodes.

We solve the optimal deviations for different sets of
parameters and find the critical values for which a second-
ary instability is triggered. The results are restricted to
n � 1 since in Ref. [21] it has been shown that for a given
� these modes become first unstable (see their Fig. 15). For
a given deviation the corresponding cross-section energy
density (required to generate the distorted profile) is

 E � 2�
Z 1

0
r�W	�W � 2�1� r2�
dr: (7)

Figure 1 presents the cross-section energy density En of
the optimal deviation required to reach neutrally stable
secondary waves (instabilities of the modified base flow),
as a function of � for several values of Re. As Re is
increased the corresponding curves have lower local mini-
mum energy densities. For Re< 600 a single solution
exists (e.g., see the blue solid curve for Re � 500).
When Re is increased slightly above Re � 600 a bifurca-
tion occurs, forming two different branches of solutions,
indicated by the blue solid and red dashed curves (e.g., see
the two curves having two local minima at Re � 800).

Figure 2 presents the optimal deviations corresponding
to the minima of the curves shown in Fig. 1. The blue solid
lines correspond to the lower �min branch (blue solid
curves in Fig. 1) and the red dashed lines correspond to
the higher �min branch (red dashed curves in Fig. 1). For
Re> 600 the deviation associated with the longer second-
ary wave (blue solid lines) tends to occupy the outer part of
the pipe, closer to the wall, whereas the deviation associ-
ated with the shorter secondary wave (red dashed lines)
occupies the inner part, closer to the centerline. As Re is
increased the deviations associated with the longer and
shorter secondary waves move further towards the wall
and the centerline, respectively.

From Figs. 1 and 2 we note that for Re up to �2000 the
global minimum for each curve is the one located closer to
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FIG. 1 (color online). Energy density neutral curves vs axial
wave-number for various Reynolds numbers.
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the wall, whereas for values above it the global minimum is
closer to the centerline. The lowest Re at which the mini-
mum of the higher wave-number deviation solution be-
comes the global minimum is denoted by Rem. It is
suggested here that Rem represents the critical Reynolds
number (Recr) for ‘‘natural‘‘ transition. This suggestion is
discussed below.

In Fig. 3(a) the relation between the minimum distur-
bance energy density and the Reynolds number is pre-
sented for Re � 1200–3000. For all curves in Fig. 3 the
blue solid lines correspond to the lower �min solutions,
whereas the red dashed lines correspond to the higher �min

solutions. The intersection of the two lines in Fig. 3(a) is at
Rem � 1840. To explain this intersection it is pointed out
that the energy density in (7) consists of two contributions:
the first one is Ed � 2�

R
1
0 r�W

2dr representing the en-
ergy density due to the external disturbance responsible for
the deviation in the profile, whereas the second one,

�Eint � 4�
R

1
0 r�W�1� r

2�dr, represents the interaction
between the deviation and the unperturbed base flow. In
Fig. 3(b) their dependence on Re for both branches is
shown. The energy Ed associated with the higher �min

branch is lower than the one associated with the lower
�min branch for all Re. This is due to the fact that for a
given deviation magnitude the contribution to the energy
density is smaller for annular cross sections closer to
centerline. Consequently, for a sufficiently large deviation,
required to cause an inflectional instability, less energy is
needed for a deviation radially closer to the centerline.
Similar arguments apply for �Eint; i.e., the energy �Eint

associated with the higher �min branch is less negative than
the one associated with the lower �min branch for all Re
(the negative sign of �Eint implies that this part of energy is
transferred to the deviation from the parabolic profile). The
quantity��Eint is smaller than Ed. As Re is decreased the
magnitude of the deviation required to trigger instability
increases and �Eint becomes more significant. At Re<
Rem it reduces the total energy of the deviation next to the
wall to a lower value than the energy of the deviation closer
to the centerline.

The scaling of the minimal deviation amplitude (square
root of Ed) with Re isO�Re�1� for both solutions as shown
in Fig. 3(c). This scaling has been shown to hold for the
higher�min branch in Ref. [21] (their Fig. 14). This result is
in accordance with the scaling of Recr for transition found
in experiments [23].

In Fig. 3(d) the phase velocity cmin (two bottom curves)
and axial wave number �min (two top curves) correspond-
ing to the two deviation solutions shown in Fig. 3(a), are
presented. The figure shows that the subcritical solution
(having the minimum energy below Rem) generates sec-
ondary waves which have about twice the wavelength of
the supercritical waves (having the minimum energy above
Rem). The time scale (1=�c) of the secondary waves
associated with the subcritical solution is approximately
3.5 times longer than the one associated with the super-
critical solution. Both the length and time scales of any
possible secondary wave solution must be much lower than
the axial length and time scales of the deviation (it should
be noted that although in the analysis the deviation is
independent of the axial coordinate and time, a weak
dependence must exist, in order for the deviation to satisfy
the Navier-Stokes equations. A discussion on this point is
given in Bottaro et al. [19]).

Summarizing the main findings, it is claimed that the
Reynolds number at which the high wave-number devia-
tion solution becomes the dominant one (having a global
minimum energy density), represents the critical Reynolds
number for natural transition. Accordingly, natural transi-
tion should be characterized with a nonregular motion
close to the center of the pipe, the secondary growing
waves should be helical, having phase velocities close to
1, and relatively short wavelengths and high frequencies.
The latter two characteristics may supply an explanation

 

1500 2000 2500 3000

4

6

8

10

12

14
x 10

−5

Re

m
in

(E
n
)

(a)

4 6 8

x 10
−4

0.005

0.01

0.015

Re−1

E
d

1/
2

(c)

1500 2000 2500 3000
0

1

2

3

4

Re

c m
in

α m
in

(d)

1500 2000 2500 3000

−1

0

1

2

x 10
−4

∆ 
E

in
t   

   
   

   
   

  E
d

Re

(b)

FIG. 3 (color online). (a) Minimum deviation energy density
vs Re. (b) Minimal amplitude vs 1=Re. (c) Two parts of the
energy corresponding to the deviations in (a). (d) phase velocity
and axial wave-number corresponding to the deviations in (a).
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for the preference of the solution having a global minimum
of energy density above Rem to be the one leading to
transition. If the deviation persists over a sufficiently
long time and spatial extent, compared with the respective
scales of the secondary waves, these waves can grow and
initiate transition.

We now discuss previous experimental results with re-
spect to the above mentioned findings. To the best of our
knowledge transition has not been sustained for Re less
than� 1750 [10,24]. Measurements of the turbulence level
radial distribution in a subcritical case (Re � 1200) [7], at
which disturbances have been introduced at the pipe inlet
where the flow is not fully developed, showed a peak near
the wall which decayed with downstream distance. In a
different experiment, at which the laminar flow was sus-
tained for high Reynolds numbers [6], large disturbances
produced by a ring airfoil in the center of the pipe were
observed to lead to turbulence, while smaller axisymmetric
disturbances introduced at the inner wall of the pipe by an
oscillating sleeve decayed. These two experiments support
the above suggested scenario, according to which natural
transition begins in the central part of the pipe, whereas for
subcritical conditions disturbances are concentrated in the
outer part of the pipe and decay with downstream distance.

By introducing large disturbances into the developed
flow, experiments showed a well defined turbulent region
termed a ‘‘puff’’ for 2000< Re< 2700 [8,9]. The puffs
originated at the pipe centerline, and for Re> 2000 the
velocity at the centerline dropped significantly. These re-
sults are further supporting the above suggested transition
scenario. Above Rem transition is first observed at the
central part of the pipe. As expected from the deviation
profile, a velocity deficit near the centerline is noticeable
(see Fig. 2). Flow visualizations demonstrated that a
streamwise helical motion is associated with the puffs
[25]. This agrees with the character of the secondary
growing waves having n � 1. In similar experiments using
constant-mass-flux flow [10] the initial three stages of the
transition process at moderate Reynolds numbers above
1800 has been described as (a) laminar flow, (b) a gradual
reduction of the axial velocity at the center of the pipe, and
(c) helical wavelike structures observed in the central axial
part of the flow. Additional similar direct-numerical-
simulations (DNS) results [26] also support our proposed
transition scenario. Very recently it has been shown ex-
perimentally that turbulent puffs are sustained only above
Recr � 1750 [24]. These experiments were followed by
DNS results, obtaining Recr � 1870 [27].

The main difference between the on-axis velocity time
series (measured close to the disturbance inlet) of distur-
bances which lead to a puff and those which decay is that
the first ones are approximately 50% longer than the latter
[10]. Because the time scale of the secondary waves asso-
ciated with the centerline deviation is much shorter than
the one associated with the deviation next to the wall, this
experimental observation supports the above mentioned

argument that for secondary waves to grow, the deviation
has to persist over sufficiently long time and spatial extent.

The authors thank Professor A. Bottaro for a fruitful
discussion regarding the method of optimal deviations.
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