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Using Lie group theory and canonical transformations, we construct explicit solutions of nonlinear
Schrodinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it
to show that localized nonlinearities can support bound states with an arbitrary number solitons, and
discuss other applications of interest to the field of nonlinear matter waves.
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Introduction.—Solitons are self-localized nonlinear
waves which are sustained by an equilibrium between
dispersion and nonlinearity and appear in a great variety
of physical contexts [1]. In particular, these nonlinear
structures have been generated recently in ultracold atomic
bosonic gases cooled down below the Bose-Einstein tran-
sition temperature [2—4]. In those systems, the effective
nonlinear interactions are a result of the elastic two-body
collisions between the condensed atoms.

These interactions can be controlled by the so-called
Feschbach resonance (FR) management [5], which has
been used to generate bright solitons [3,6], induce collapse
[7], etc. Many different nonlinear structures induced by
time variations of the condensate scattering length have
been theoretically predicted, such as periodic waves [8],
shock waves [9], stabilized solitons [10], etc.

Interactions can be made spatially dependent through
the spatial dependence of either the magnetic field or the
laser intensity (in the case of optical control of FR [11])
acting on the Feschbach resonances. This fact has moti-
vated recently many theoretical studies on nonlinear waves
in Bose-Einstein condensates (BECs) with spatially inho-
mogeneous interactions including solitonic emission [12]
and the dynamics of solitons when the modulation of the
nonlinearity is a random [13], linear [14], periodic [15], or
localized function [16]. The existence and stability of
solutions has been studied in Ref. [17].

In this Letter, we construct general classes of nonline-
arity modulations and external potentials for which explicit
solutions can be constructed. To do so, we use Lie group
theory and canonical transformations connecting problems
with inhomogeneous nonlinearities with simpler ones hav-
ing an homogeneous nonlinearity. These mathematical
methods will be used to show that localized nonlinearities
can support bound states with an arbitrary number of
solitons without any additional external potential. This is
an interesting result with physical implications and a pecu-
liarity of inhomogeneous nonlinearities. Our focus will be
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on applications to matter waves in BECs, but our ideas can
be applied to nonlinear optical systems [18].

General theory.—In this Letter, we consider physical
systems ruled by the nonlinear Schrodinger equation with a
spatially inhomogeneous nonlinearity (INLSE), i.e.,

i = = + VY + g0lYlPy, (D

where V(x) is an external potential and g(x) describes the
spatial modulation of the nonlinearity. Stationary solutions
of the INLSE are of the form ¢y = ¢pe~ ", where

— T VP +g(0)¢° = Ao, ¢(+00) = 0.
2

A second-order differential equation A(x, u, u/, u”) =0
possesses a Lie point symmetry [19,20] of the form M =
E(x, u)a/ox + n(x, u)d/ou if
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In our case, A(x, ¢, ¢,, ¢,,) is given by Eq. (2), and the
action of the operator M@ on it leads to

§¢¢> =0, (4a)

Npp — 2645 = 0, (4b)

2ncp — €xx —3fE4 =0, (40)

N — Efx = fg + Mg f — 26 =0, (4d)

where f(x, ¢) = V(x)¢p + g(x)¢> — A¢. Solving the pre-

vious equations, we find that the only Lie point symmetries
of Eq. (2) are of the form

M = b(x) -+ () 5)

0
ap’
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where
1
#00 = i o 2 [ o
clx) = Eb (x) + K, (6b)

0= c"(x) = b(x)V'(x) = 26'(X)[V(x) = A}  (6¢)

for any constant K. Equations (6) allow us to construct
pairs {V(x), g(x)} for which a Lie point symmetry exists.

Conservation laws and canonical transformations.—It
is known [21] that the invariance of the energy is associated
to the translational invariance. The generator of such a
transformation is of the form M = 9/dx. To use this fact,
we define the transformation

X = f(x), U = n(x)¢, @)

where f(x) and n(x) will be determined by requiring that a
conservation law of energy type M = 9/dX exists in the
canonical variables. Using Egs. (5) and (7), we get

Fl) = f b() (8a)
(x) = —K Ld (8b)
TG )‘/2 e"p[ 557"

When K =0, the transformations preserve the
Hamiltonian structure, and Eq. (2) in terms of U =
b 12(x)¢p and X = [5[1/b(s)]ds becomes

d2
dx?

where E = [A — V(x)]b(x)* — 1b'(x)* + 1b(x)b"(x) is a
constant. This means that in the new variables we obtain
the nonlinear Schrodinger equation (NLSE) without an
external potential and with an homogeneous nonlinearity.
Of course, not any choice of V(x) and g(x) leads to the
existence of a Lie symmetry or an appropriate canonical
transformation [e.g., the function b(x) must be sign definite
for U and X to be properly defined].

Connection between the NLSE and INLSE via the
LSE.—We can use all of the known solutions of the
NLSE (9), e.g., solitons, plane waves, and cnoidal waves,
to construct solutions to Eq. (2). Setting K = 0 and elim-
inating c(x) in Egs. (6), we get

8(x) = go/b(x)’ (10)
and an equation relating b(x) and V(x):

b"(x) — 2b(x)V'(x) + 4b'(x)A — 4b'(x)V(x) = 0. (11)

+gU* = EU, ()]

Although we can eliminate b(x) and obtain a nonlinear
equation for the pairs g(x) and V(x) for which there is a Lie
symmetry, it is more convenient to work with (11), which is
a linear equation. Alternatively, we can define p(x) =
b'/2(x) and get an Ermakov-Pinney equation [22]

Paxt [A - V(x)]P = E/P3» (12)

the solutions of which can be constructed as

p=(ag?+2Bp @) + ye3)'/? (13)

with a, B, and 7y constant and ¢;(x) being two linearly
independent solutions of the Schrodinger equation

—ount Ve = Ae. (14)

This choice leads to E = AW?, with A = ay — 8% and W
being the (constant) Wronskian W = ¢/ ¢, — ¢ ¢)5. Thus,
given any arbitrary solution of the linear Schrodinger
equation (14), we can construct solutions of the nonlinear
spatially inhomogeneous problem Eq. (2) from the known
solutions of Eq. (9). Thus, using the huge amount of
knowledge on the linear Schrodinger equation, we can
get potentials V(x) for which ¢, and ¢, are known and
construct b(x), the canonical transformations f(x) and
n(x), the nonlinearity g(x), and the explicit solutions ¢ (x).

Systems without external potential [V(x) = 0].—As a
first application of our ideas, we choose V(x) = 0; then
Eq. (11) becomes b"'(x) + 4b'(x)A = 0 and its solution is

b(x) = C, sinwx + C, coswx + C3(A > 0),
b(x) = C] e + Czeiwx + C3()\ < 0),

(15a)
(15b)

where w = 24/|Al. Using Eq. (10), we see that Eq. (15b)
corresponds to an exponentially localized nonlinearity
[Fig. 1(a)] and Eq. (15a) leads to a periodic one:

g(x) = go(1 + acoswx) ™3 (16)

[Figs. 1(b) and 1(d)]. For small «, this nonlinearity is

approximately harmonic [Fig. 1(b)]
g(x) = go(1 — 3a coswx), a < 1. 17

We can construct our canonical transformation by using
Egs. (7) and obtain

0.025] 2) 1.25

w=2
g(x)| = G125 oo

0 -30 L0 30

FIG. 1 (color online). (a) Examples of exponentially localized
nonlinearities given by Eq. (15b) with C; = C, =2, C; =0,
w =1/2 (blue line), and C;, =C, =125, C3=0, w =2
(green line). (b) Comparison of g(x) given by Eq. (16) for g, =
o =1, « =0.05 (blue line) and its harmonic approximation
(17) (green line). (c) Example of a black soliton solution of
Eq. (2) with V = 0 and an inhomogeneous nonlinearity given by
Eq. (16) with w = 1, @ = 0.3, and gy = 1. (d) Inhomogeneous
nonlinearity given by Eq. (16) with w = 1, @ = 0.3, and g; = 1
used to calculate the black soliton solution.
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l—a wx
¥ Cytan?. (18)

tan[ng(x)} =

Using any solution of Eq. (9) with E = } w?*(1 — &?), this
transformation provides solutions of Eq. (2) with g(x)
given by (16). For example, when gy, > 0 we can obtain
black soliton solutions of Eq. (2) of the form

w [1—a?
d(x) = —\/ (1 + a coswx)
2V ¢

w |1 —a?
X tanh[a > X(x)} (19)

where X(x) is defined by Eq. (18) [Fig. 1(c)]. We empha-
size that this is only a simple example of the many possible
solutions that can be constructed in such a way.

Concerning the case given by Eq. (15b), we would like
to discuss it in more detail since we will get an interesting
physical phenomenon from its analysis. In order to sim-
plify the following formulas (without losing any significant
features), we restrict ourselves to a particular choice of the
constants w =1, C,=C,=1/2, and C;=0 in
Eq. (15b). Thus, b(x) = coshx and Eq. (2) with g(x) given
by Eq. (10) and A = —1/4,

80

3=, 20
cosh’x ¢ (20)

1
—pt—+
bt 7

in terms of U and X can be written as Eq. (9) with E = 1/4
being cosX(x) = — tanhx; thus, 0 =< X =< 7, and to meet
the boundary conditions ¢(*o0) = 0 one has to impose
U(0) = U(m) = 0. This means that the original infinite
domain in Eq. (20) is mapped into a bounded domain for
Eq. (9). It is easy to check that, when g, <O,

_sn(uX, k)
U0 =1 40X 0

solves Eq. (9) provided u? = 1/[4(1 —2k*)] and n* =
kK*(1 — k?)/[21gol(1 — 2k?)]. The function U(X) satisfies
U(0) = 0, and, in order to meet U(7) = 0, the condition
um = 2nK(k), where K(k) is the elliptic integral K(k) =
[7(1 — k*sin’p)~/2d @, must hold. Thus, to satisfy the
boundary conditions, k must be chosen to satisfy 4nK (k) X

V1 =2k*= 7 forn=1,2,.... It can be shown that for
every integer number n this algebraic equation has only a
solution k,,, which means that there are an infinite number
of solutions of Eq. (20) of the form given by Eq. (21).
Moreover, each of those solutions has exactly n — 1 zeros.
In Fig. 2, we plot some of them corresponding to n =
1,2, 3. These solutions can be seen as ‘“‘bound states” of
several (n) solitons with alternating phases, and their ex-
istence is remarkable. When the nonlinearity is homoge-
neous, g(x) = go <0, Eq. (2) has only one localized
solution for each A, the cosh-type soliton; in other words,
there are no bound states of several solitons. However,

2D

9,/Ny? (©)

FIG. 2 (color online). Solutions of Eq. (20) with gqg = 1 cor-
responding to (a) n =1, k; = 0.634493, (b) n=2, k, =
0.690727, and (c) n = 3, k3 = 0.699 957.

when g(x) is modulated and decays exponentially as given
in Eq. (20), we get an infinite number of localized solutions
labeled by their finite number of nodes. This is a novel and
interesting feature of localized nonlinearities.

Systems with quadratic potentials V(x) = x*.—Any po-
tential for which explicit solutions of Egs. (14) are known
can be used to find nontrivial nonlinearities for which
solutions can be constructed. Out of many possibilities,
we discuss only an example of interest for the applications
to nonlinear matter waves in Bose-Einstein condensates,
which is V(x) o« x2.

Let us choose b(x) = ¢*, which leads to a quadratic
trapping potential V(x) = x> and a Gaussian nonlinearity
such as the one generated by controlling the Feschbach
resonances optically using a Gaussian beam (see, e.g.,
[12]); thus,

g(x) = goexp(=3x%),  V(x) =% (22)

Our canonical transformation is given by X(x)=
[§dtexp(—1*) = (y//2)erfx. In this case, Eq. (2) is trans-
formed into

- UXX + g0U3 = 0. (23)

Note that the range of X is again finite since —./7/2 <
X = \/m/2, and, hence, we can again construct many
localized solutions to Eq. (2) starting from solutions of
(23) which satisfy the boundary conditions U(*/7/2) =
0. This can be done noting that, for g, < 0 and any u, the
functions

UD(X) = —E_cn(uX, k) 24)
8o
and

V2lgol dn(pX, k)’

with k, = 1/+/2, solve Eq. (23) and that U"(X) and
UP(X) vanish when uX = (2n + 1)K(k,) and pX =
2nK(k.) correspondingly. Thus, we come to an infinite
number of solutions of Eq. (23) under zero boundary
conditions on the new finite interval, which correspond to
different values of w. Finally, localized solutions of the
NLS equation (2) are given by
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FIG. 3 (color online). Different solutions of Eq. (2) for poten-
tial and nonlinearities given by Eq. (22). (a) n =1, (b) n = 2,
and (c) n = 3. The spatial region shown corresponds to x €
[—6,6]

2R o2 20n(0, (x), k) n=1,3,...,

_ 7lgol
h,(x) = \2{lK(Tk() /2 50(0,00..) 04 (26)
\/27T|Is’u| dn(6,(x),k.) N
with
0,(x) = nK(k.Jerfx. @7

It can be shown by simple asymptotic analysis that the last
factors in Eq. (26) tend to zero as x — oo faster than
exp(—x?/2) and that these are indeed localized solutions of
our problem as can be seen in the ones plotted in Fig. 3,
with different numbers of zeros [¢,(x) possesses n — 1
Zeros].

In conclusion, we have used Lie symmetries and canoni-
cal transformations to construct explicit solutions of the
nonlinear Schrodinger equation with a spatially inhomoge-
neous nonlinearity from those of the homogeneous non-
linear Schrodinger equation. The range of nonlinearities
and potentials for which this can be done is very wide. We
have studied in detail the case V = 0 with localized and
periodic nonlinearities. In the former case, we have used
our theory to construct an infinite number of multisoliton
bound states, something which is not possible in the case of
spatially homogeneous nonlinearities. Finally, we have
presented an example of physical interest (harmonic trap
and Gaussian nonlinearity) for which exact solutions can
be constructed. The ideas contained in this Letter could
also be applied to study time-dependent problems, higher-
dimensional situations, multicomponent systems, etc. We
hope that this Letter will stimulate further research on
those topics and help to understand the behavior of non-
linear waves in systems with spatially inhomogeneous
nonlinearities.
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