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We present experimental data of the frequency-resolved optical gating measurements of light pulses
revealing interference features which correspond to sub-Planck structures in phase space. For super-
positions of pulses, a small, sub-Fourier shift in the carrier frequency leads to a state orthogonal to the
initial one, although in the representation of standard time-frequency distributions these states seem to

have a nonvanishing overlap.
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It was shown by Zurek [1] that sub-Planck structures in
phase space—an unexpected sign of quantum interfer-
ence—play a surprisingly important role in the distin-
guishability of quantum states. A sub-Planck phase space
shift applied to superposition of coherent states is sufficient
to produce a state which is orthogonal to the unshifted one.
This seems counterintuitive, because such superpositions
of coherent states overlap significantly. Nevertheless, a
very small shift causes the original and shifted superposi-
tions to be orthogonal to each other, which makes them—
at least in principle —distinguishable. The effect was origi-
nally studied for a superposition of four coherent states [1],
and then in Refs. [2,3] it was shown that superpositions of
just two coherent states lead to a similar result.

In both classical optics and quantum mechanics, the
linear superposition principle is the basis of all interference
phenomena. Thus, it should not surprise one that if quan-
tum wave packets are replaced by light pulses, effects
similar to sub-Planck structures, i.e., sub-Fourier struc-
tures, should be observed. In this Letter, an experimental
realization of a time-frequency version of this phenomenon
is reported.

Instead of superpositions of coherent states in phase
space, optical fields in the form of coherent superpositions
of pulses are used, and the frequency-resolved optical
gating (FROG) spectrogram is recorded. A specific cross
section of this spectrogram represents a scalar product of
the measured field and the field with the same envelope but
a shifted carrier frequency. We show that, for fields that
have the form of a superposition of two pulses, this scalar
product is an oscillating function of the frequency shift.
Moreover, zeros of this scalar product are spaced by sub-
Fourier distances in the scale of the superposed pulses; i.e.,
the distance between them is smaller than the single pulse
spectral width.
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During the past decade, FROG has become a standard
method for reconstruction of the amplitude and phase of
ultrashort light pulses [4—6]. In the second harmonic ver-
sion of this technique (SH FROG), a pulse to be measured
is split and its two mutually delayed replicas are over-
lapped in a nonlinear optical crystal. The sum frequency
signal generated in the crystal is spectrally resolved and
recorded for different time delays 7. The resulting time-
frequency map has the form

]2
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and its cross section for zero delay reads
Iinoa(0, 0) = | [[aE0 e @

Now consider a pulsed electric field with a real envelope
A (1) and a linear phase

E(t) = A(t)e 1o, 3)

where w_. denotes a carrier frequency of the pulse. The
absolute value squared of the scalar product of this field
and a field with the same envelope but a carrier frequency
shifted by 8, i.e., E(t)e'?, is given by

2
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For transform-limited pulses of a given carrier frequency
., the form of Ipgeg(0, 8 + 2w,) is the same as the one
given by Eq. (4). In other words, the 7 = 0 cross section of
the FROG map measured at 2w, + & is equal to an overlap
of the field E(¢) and the same field shifted in frequency by
8, ie., E(t)e™".
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For example, when two Gaussian pulses characterized
by their carrier frequency w,., dispersion ¢, and time
separation 21, are superposed:

Esup(t) — (e—[(t—t0)2/40'2] + e—[(t+to)2/4a'2])e—iwct’ (5)
the scalar product (4) becomes

KE ()| EP (1)ei®)]? = 877 0%e =" X [cos(S1o)

+ e*(r(z)/20'2)]2y (6)

while the 7 = 0 cross section of the corresponding FROG
spectrogram is

Iipos(0, 8) = 8migle (0720 0

X {cos[(8 — 2w, )tg] + e~ W/22. (7)

Equation (6) can be derived from (7) after substituting 6 —
6 + 2w,. For ty # 0, Egs. (6) and (7) have an infinite
number of nearly equally spaced zeros. This means that a
superposition of two Gaussian pulses is orthogonal to
similar superpositions with appropriately shifted carrier
frequencies. Moreover, the smallest of these leading-to-
zero-overlap shifts is given approximately by 77/2¢,, which
for sufficiently large separations 2z, becomes sub-Fourier
in a single pulse scale. These sub-Fourier shifts correspond
directly to the sub-Planck shifts leading to orthogonality of
superpositions of two (or four) coherent quantum wave
packets [1,2].

The experimental setup is presented in Fig. 1. The pulse
source was a homebuilt Ti:sapphire oscillator delivering
50 fs (FWHM) pulses centered at 780 nm with a 80 MHz
repetition rate. To generate a pulse pair with a highly stable
delay, we used a half wave plate, a crystalline quartz block
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FIG. 1 (color online). The experimental setup. The half wave
plate A/2, a 10 mm crystalline quartz plate (Q), and the polarizer
(P) are used to generate the double pulse. SH FROG is a standard
second harmonic FROG with a 100 um type I BBO crystal and a
linear CCD array spectrometer.

10 mm thick (optic axis parallel to the input surface), and a
polarizer.

The pulse polarization was first rotated, causing the
pulse to split into two replicas of mutually perpendicular
polarizations and similar energies in the quartz crystal.
When the polarizer was set at 45° with respect to the optic
axis, a pair of delayed pulses with parallel polarizations
emerged. The group delay between 780 nm pulses prop-
agating as ordinary and extraordinary rays is approxi-
mately 30 fs/mm in crystalline quartz. The total delay
was fine-tuned by tilting the quartz block. The standard
FROG apparatus consisted of a dielectric beam splitter, a
delay line with a stepper motor-driven translation stage
(8 fs/step), a 100 um type I B barium borate (BBO)
crystal for second harmonic generation, and a spectrometer
with a linear CCD array of 2048 pixels providing resolu-
tion better than 0.5 nm (Ocean Optics, USB 2000).
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FIG. 2.  FROG maps measured for superpositions of two pulses
with slightly different separation distances 2f, between the
pulses: (a) 27y =305 fs, (b) 2ty = 309 fs. Black rectangles
represent minimal uncertainty relation areas of a single pulse;
white ones give the corresponding FWHM widths.
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FIG. 3. Numerically calculated FROG maps corresponding to
the experimental results presented in Fig. 2.

Figures 2(a) and 2(b) present the FROG spectrograms
measured for a superposition of two pulses with the sepa-
ration 2¢, of 305 and 309 fs, respectively. Numerically
calculated maps for pulse pairs with parameters corre-
sponding to the measurements are presented in Figs. 3(a)
and 3(b). The black rectangles at the contour plots show
minimal uncertainty relation areas of a single pulse
47AtAv = 1; the white ones give the corresponding
FWHM widths. Figures 4(a) and 4(b) show 7 = 0 cross
sections of the measured spectrograms together with their
theoretical fits.

The measured time dispersion A7 = ¢ of the superposed
pulses was 20.1 = 0.5 fs (i.e.,, 47.3 = 1.0 fs FWHM),
which imposes a 4.0 = 0.1 THz Fourier limit on the fre-
quency dispersion Av (or, equivalently, 9.3 = 0.2 THz
FWHM). The zeros of the oscillating structures seen in
Fig. 4 are less then 3.3 THz apart, which is below the
Fourier limit imposed by any of the single pulses. These
zeros correspond to carrier frequencies shifts for which
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FIG. 4 (color online). The 7 = 0 cross sections of FROG maps
from Figs. 2(a) and 2(b). Experimental data are denoted by dots,
and lines present the corresponding numerically calculated
curves. The relative phase between the pulses was the only
free parameter of the fits.

pairs of pulses have a vanishing overlap. Such a shift can be
called sub-Fourier, although the Fourier-Heisenberg uncer-
tainty relation is certainly not violated for the state under
study. The smaller is the change of the carrier frequency
leading to the zero overlap, the larger the separation dis-
tance 2¢, between the pulses.

It is instructive to study the effect demonstrated above
using standard time-frequency distribution functions. The
Wigner distribution [7,8], which is especially useful for
description of classical and quantum interference [9,10],
for a pulse with an electric field E(¢) is defined as

We(t, ) = [;;E*(r + %)e”"“E(t - %) (8)

An important property of the Wigner function that links the
Wigner function of two fields E,(¢) and E,(f) and their
scalar product is given by the Moyal formula:
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FIG. 5. The Wigner function calculated for (a) two Gaussian
pulses, E(f) = e =10 + ¢=(+0) 1 =35 and (b) a similar
pair with the carrier frequency shifted by 7/2¢,. (a) and (b)
correspond to mutually orthogonal pairs of pulses. The dotted

contours denote negative values of the Wigner function.
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FIG. 6. The Husimi function calculated for (a) two Gaussian
pulses, E(r) = ¢ =0 + ¢=(+0)? 1 =35 and (b) a similar
pair with the carrier frequency shifted by 7/2t,. Even though the
two plots appear to be very similar, the scalar product of these
two pairs vanishes.

KE|E))? = 27 [ di f doWy (1, )Wy, (1, ©). ()

Figure 5(a) presents a contour plot of the Wigner func-
tion for the superposition of two Gaussian pulses [Eq. (5)]
with the separation 2ty =7 and o = 1/2. The second
contour plot [Fig. 5(b)] corresponds to the Wigner function
of the same pair of pulses but with the carrier frequencies
shifted by #/2t,. The calculated scalar product of these
two superpositions is zero. In the Wigner representation,
the vanishing of the scalar product may be interpreted as an
interference effect: The interference fringes in Fig. 5(b) are
shifted by half of the modulation period with respect to
those in Fig. 5(a). This shift causes, in the scalar product
calculated according to Eq. (9), a negative contribution
from the interference terms to cancel exactly the positive
contribution from the Gaussian peaks.

Another widely used time-frequency distribution is the
Husimi function (or the Glauber Q function) [11].
Figures 6(a) and 6(b) present the Husimi function calcu-
lated for the state described by Eq. (5) with the same
parameters as those used in the evaluation of the Wigner
function. The plots presented in Figs. 6(a) and 6(b) are
identical except for a small frequency shift. The fact that

the scalar product of the corresponding fields vanishes is
rather surprising—at least until one recalls that the Moyal
formula given by Eq. (9) is not applicable to the Husimi
function (see Fig. 5).

In conclusion, we have demonstrated the presence of
sub-Fourier structures in the measured time-frequency
representation of light pulses. These structures are classical
counterparts of sub-Planck features in the phase space. We
have shown that two pairs of pulses displaced by a small,
sub-Fourier shift of the carrier frequency may be mutually
orthogonal even if they seem to have a nonvanishing over-
lap in the time-frequency representation of some com-
monly used quasidistributions.
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