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We create entangled states of the spin and motion of a single 40Ca� ion in a linear ion trap. We
theoretically study and experimentally observe the behavior outside the Lamb-Dicke regime, where the
trajectory in phase space is modified and the motional coherent states become squeezed. We directly ob-
serve the modification of the return time of the trajectory, and infer the squeezing. The mesoscopic en-
tanglement is observed up to �� � 5:1 with coherence time 170 �s and mean phonon excitation �n � 16.
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A two-state system interacting with a quantum harmonic
oscillator has for a long time played a fundamental role in
quantum optics, and more recently has attracted interest in
the context of micromechanical oscillators [1], quantum
information [2], and mesoscopic quantum physics. The
states of motion of a quantum oscillator which most closely
resemble classical states of motion are the Glauber coher-
ent states. It has been pointed out that a superposition of
such states, with a large difference between their coherent
state parameters �, permits an investigation of mesoscopic
quantum physics using this system [3,4]. In particular,
interest has focused on a superposition involving an en-
tanglement between the large system (the oscillator) and a
smaller (e.g., two-state) system, viz:

 j i �
1
���
2
p �j�"ij"i � ei’j�#ij#i�; (1)

where ��2 � j�" � �#j2 is large, j"i, j#i are the states of
the two-state system, and the interference phase ’ must be
stable and under control in the experiment (as must the
values of �";#, including their relative phase).

The coherent states j�#;"i are mesoscopic in that their
energy is �n � j�j2 � 1 in units of the fundamental exci-
tation energy (the gap between ground and excited states)
and the separation xs of the motional wave packets is
greater than their individual size x0 by the ratio xs=x0 �
2��� 1. The size of the Hilbert space required to express
the motional state is approximately log2 �n qubits, and in the
case of a state such as (1) there is entanglement with
another degree of freedom. The phase coherence time,
T2, is sensitive to the separation [5]. These measures are
summarized by the list f �n;��; xs; T2g.

States of the type (1) have been realized in a number of
systems. For experiments where the coherence of the two
parts of the state was observed [6], the reported parameter
values were f �n;��; xs; T2g � f8:8; 2:97; 42 nm; O�10 �s�g
[3], f12; 5:2; 73 nm; 6 �sg [9]; f1; 2; 14 nm;�0:5 msg [7];
f9:5; 1:8;�; 90 �sg [4].

We present experiments in which the mesoscopic super-
position state (MSS) is realized with large values of both

the size and the coherence time together, and we de-
scribe and demonstrate a qualitatively new behavior which
appears outside the Lamb-Dicke regime (LDR). The LDR
is the regime where the extent of the particle motion is
small compared to the distance over which the applied
forces vary. We have generated MSS’s of the spin and
motion of a trapped 40Ca� ion with f �n;��; xs; T2g �
f16; 5:1; 170 nm;’ 170 �sg. The Hilbert space dimension
is approximately 5 qubits. In our experiments the driving of
the motion goes outside the LDR, resulting in a dramatic
modification of the trajectory in phase space and squeezing
of the coherent state [10]. We achieve MSS’s of coherent
states, and also infer superpositions of squeezed states with
a squeezing parameter (ratio of principal axes of the
Wigner function) ’ 3.

Our system consists of a single spin-half particle in a
harmonic potential, subject to a ‘‘walking wave’’ of light
formed by counterpropagating laser beams in a standing
wave configuration with a frequency difference applied
between the two beams. The walking wave provides a
spin-dependent force on the particle. The interaction
Hamiltonian is HI � H� �

P
mVmjmihmj, where m �" , #

 Vm � @� cos�kx̂�!t��m�; (2)

and H� � @���j"ih"j � j#ih#j�=2. Vm is a light shift from
far-off-resonant single-photon excitation; H� is a light
shift from off-resonant Raman excitation of spin-flip tran-
sitions. The latter has no effect on the motion, but causes
the spin state to precess. k and ! are the wave vector and
frequency of the walking wave.

The position dependence of Vm results in a spin-
dependent force fm�x; t� � �dVm=dx. The classical equa-
tion of motion is 2M!0x0�d�=dt� � i exp�i!0t�fm�x; t�
where � � exp�i!0t��x� ip=M!0�=2x0, and x0 is a
length scale. M is the mass of the ion and !0 its natural
oscillation frequency in the trap. If we take x0 �

�@=2M!0�
1=2 then � corresponds exactly to the coherent

state parameter in the quantum treatment.
We consider motional states j�i starting at or near � �

0. For small jhkxij we have the LDR, where the force
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fm�x; t� ’ @�k sin�!t��m� is independent of position.
In this case an analytical solution of the time-dependent
Schrödinger equation (TDSE) is possible [11,12]. The
quantum state is merely displaced along a trajectory ��t�
exactly matching the classical prediction. For j�j � !0,
where � � !�!0, ��t� describes a circle of diameter
��=�, where � � kx0 is the Lamb-Dicke parameter. The
motion around the circle is at a constant rate, completing a
loop at integer multiples of 2�=�. The quantum state picks
up a phase proportional to the area of the loop, plus a
contribution 	��t=2, and an oscillating phase fromR
Vmdt. This oscillating phase scales as 1=�; it is impor-

tant when hkxi � 1 but is small outside the LDR when
hkxi � 1 and we will ignore it hereafter.

We studied the dynamics outside the LDR using numeri-
cal integration of the classical equation of motion, and an
approximate numerical solution of the TDSE. The latter
included up to nmax � 100 harmonic oscillator levels and
terms in all orders of � for the carrier and first three
motional sidebands in HI.

The position dependence of the force causes the trajec-
tory to be noncircular and the motional state is squeezed.
For modest values of hkxi we find that the squeezing is
negligible and the quantum wave packet simply follows the
modified classical trajectory. For larger values the wave
packet is squeezed, changing shape dramatically for longer
times with multiple loops in phase space. Figure 1 shows
an illustrative example. The departure from a circular
trajectory and the squeezing are clearly seen. Note that
����, where � is the length of time that the force is applied,
still returns to the origin, but at a time tr earlier than the
value 2�=� for a state which stays within the LDR.

We find ���� begins to differ clearly from a circle when
hkxmaxi � 2�j�maxj> 1. Each loop is shaped like a tear
drop and tr is reduced. In the early stages of the motion, it
is still within the LDR so the initial behavior both in terms
of amplitude and phase is accurately described by the
simple analytical treatment outlined above. Similarly,
when the amplitude of the motion drops for the first time
back into the LDR the analytical treatment again gives a
good representation of the behavior, if one takes into
account the difference between the actual and LDR return
times.

We experimentally investigated the behavior using a
single 40Ca� ion in a linear ion trap [13]. The two-state
system is the spin-1=2 ground state of the ion, and the
potential (2) is realized by the light shift when the ion is
illuminated by a laser walking wave produced by a 60
 pair
of laser beams, both far (30 GHz) detuned from the � �
397 nm S1=2-P1=2 transition, and with difference wave
vector k � 2�=� along the trap axis x. Their difference
frequency ! is generated with 1 Hz precision by acousto-
optic modulation. A quantization axis is defined by a 1.4
Gauss magnetic field B at 57
. Both the quantization and
trap axes are horizontal. The polarization of each beam is

set close to linear at the ion, by nulling any differential
light shift observed in Ramsey experiments. One beam is
horizontally polarized, the other at 69
 to the vertical. The
resulting light field has three components: a 	� polarized
walking wave, a 	� polarized walking wave, and a pre-
dominantly � polarized traveling wave. The transition in
the ion is J � 1

2!
1
2 , so the 	� (	�) light interacts with

j #i (j "i), giving rise to V#, (V"), respectively.
The ion is first prepared in j #i
� �n0�, where 
� �n0� is a

thermal motional state close to the ground state with mean
motional state occupation number �n0 [14]. A sequence of
laser pulses is then applied, and finally the spin state is
measured by selective shelving followed by fluorescence
detection, see [15]. This is repeated 500 times to accumu-
late statistics, then a parameter value is changed and the
sequence repeated.

Initial experiments were carried out by Ramsey inter-
ferometry, with the oscillating force pulse W applied in
the gap. The �=2 pulses were Raman transitions driven by
the walking wave, with tunable relative azimuthal phase�.
The data reported here were obtained using a spin-echo
sequence, to eliminate slow phase noise. The first �=2
pulse evolves the spin to �j "i � j #i�=

���
2
p

. After the W
pulse, of duration �, the system is (up to a global phase)
in the state (1), with ’ � ���. In the LDR, j�";#i are
coherent states, and outside this limit they are squeezed
or more general states, centered in phase space close to�";#.
The observed signal after the final pulse is

 P�"� � �1� Re�h�"j�#iei���������=2: (3)

We determine h�"j�#i by observing P�"� as a function of �
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FIG. 1 (color online). Trajectories in phase space ���� (dotted
and dashed lines) and motional Wigner function (contour lines at
0,1,2 standard deviations) for the parameter values !0=2� �
536 kHz, � � 0:244, �=2� � 93 kHz, �=2� � 3:4 kHz and
varying forcing time �. The trajectories are shown for the two
spin states for �w � 1:41, up to the time 2�=� � 286 �s.
�w � j�" ��#j is the phase angle between the forces on the
two spin states. The return time is tr � 192 �s. For clarity, the
Wigner function is shown for just one of the trajectories at three
example times, � � 0, 96, and 286 �s. The squeezing is ’ 3 at
tr=2. In the experiments, superpositions of motion along both
members of such pairs of trajectories are created.
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and �. For each value of � we accumulate the interference
fringe pattern as a function of �, and fit it with a sinusoid.
To factor out the effect of magnetic field noise, we nor-
malize the observed fringe amplitude by comparison to
that obtained in a control experiment, having exactly the
same timing but with no W pulse. The amplitude of the
control experiment fringes drop to typically 40% for a
300 �s spin-echo time. Experimental parameters and re-
sults are shown in Table I.

The observed amplitude A and phase offset �0 of the
fringes are shown as functions of � for various data sets in
Figs. 2 and 3. This information enables us to infer the
evolution of the system. The analysis is simplified by the
fact that critical data exist only where the motion is within
the LDR; outside this region the fringe amplitude is close
to zero. To fit Awe can therefore use a LDR expression [5],
modified to take account of the reduction in return time:

 A��� � e��� exp��2D2sin2���=tr��: (4)

Here � is mainly a decay caused by decoherence effects
[5], but also includes a contribution due to squeezing. The
reduction in fringe visibility due to squeezing ranges from
less than 1% for data set 1 to approximately 9% for data
set 3. The return time tr constrains the global trajectory,
and allows our most direct observations of non-Lamb-
Dicke behavior, in that we find in general tr is significantly
less than 2�=�. The parameter D is related to �0, the
maximum � which would occur for the same force if the
motion were entirely within the LDR. We have

 D � R�0

�����������������
2 �n0 � 1

p
sin��w=2�; (5)

where the two trajectories are separated by the angle �w �
j�" ��#j and R � tr�=2� is the fractional reduction in
return time.

The phase is fitted by a similarly modified LDR expres-
sion, with B2 � R2�2

0 sin��w�:

 �0��� � �const� � ���� B2sin2���=tr�: (6)

With the polarization angles in the experiments, �w �
1:41�5� rad. The amplitude and phase analyses thus each
give values of R�0 and tr. We are then able, using the
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FIG. 3 (color online). Observed phase offset of the fringes as a
function of �, successive data sets are offset by 20 rad.
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FIG. 2 (color online). Observed fringe amplitudes as a func-
tion of �, normalized to the value at � � 0. Each point is
obtained from a sinusoidal fit to a scan over �. Dashed hori-
zontal lines separate data sets taken at different trap frequencies.
Dashed vertical lines are drawn at � � 2�=�.

TABLE I. Experimental parameters and results. Column 1 gives the data set number. The next 5 columns give values extracted
directly from the fringe data by curve fitting. The rest of the Table gives further raw information and derived quantities. � is known
from the trap frequency. �c is obtained by Rabi flopping on the carrier (value a) and from the fitted �� (value b). The detuning � is set
experimentally to within 0.5 kHz for a given data set (c) and can be evaluated also (via the TDSE) from the data analysis (d). The same
process leads to a value of �0 (f) which can be compared with that deduced from the parameters of the light field (e). Finally, we infer
�max, the maximum excursion in phase space, and ��max, the maximum distance in phase space between the two spin components,
from the TDSE. We estimate b,d, f, �max, and ��max have 5% accuracy; the consistency check a,c, and e combines Rabi flopping,
relative power, and polarization measurements and is accurate to �15%.

Set D tr (�s) � (ms�1) B ��=2� (kHz) �n0 � �c=2� (kHz) �=2� (kHz) �0 �max ��max

a b c d e f
1 1.45 89 2.0 2.15 4.48 0.07 0.244 139 145 10 10.1 2.2 2.4 2.1 2.7
2 2.27 147 4.1 3.24 4.49 0.07 0.244 139 145 5 5.3 4.5 4.2 3.1 4.0
3 3.12 192 5.6 4.27 4.46 0.07 0.244 139 145 3.5 3.4 6.4 6.8 4.0 5.1
4 1.50 91 3.5 2.03 7.36 0.04 0.199 151 185 10 10.2 2.0 2.3 2.1 2.7
5 1.88 160 4.6 2.72 4.27 0.02 0.245 137 142 �5:5 �5:2 4.0 3.4 2.7 3.5
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results of our simulations, to determine R (and hence
values for the detuning and �0), �max and ��max. As a
check on the validity of our interpretation we can compare
the results obtained for �0 and �=2� with those expected
on the basis of our knowledge of the laser field. The
detuning �=2� is known to 	0:5 kHz. Two pieces of
information quantify the light intensity: the Rabi flopping
rate �c when spin-flip (‘‘carrier’’) transitions are reso-
nantly driven, and the light shift �� [deduced from (6)]
which comes from off-resonant excitation of these same
transitions during the W pulse.

For all the data there is reasonable agreement between
observations and predictions. Sets 1–3 were taken on the
same day under particularly stable conditions, and have
very good overall consistency. The largest �max and ��
(4.0 and 5.1) were obtained with set 3. In particular, we
note the large reduction in return time (R � 0:67). The
results of the numerical solution of the TDSE for this case
are shown in Fig. 1.

The observed coherence is not perfect, owing mainly to
photon scattering and motional effects (dephasing and
heating). Let a  1 be the predicted overlap of the
squeezed states at the return time in a perfect experiment,
then � � �s � �m � ln�a�=tr, where �s is caused by the
laser pulse W , chiefly by photon scattering, and �m quan-
tifies the decoherence of the mesoscopic superposition
itself, chiefly due to motional effects (electric field noise).
We see in sets 1–3 behavior consistent with the expected
��2 scaling of �m [4,5,9]. We extracted �s from control
experiments at large (200 kHz) detuning, where �m is
small. After adjusting for the laser beam power used in
sets 1–3, the observed value �s � 1:7�2� ms�1 agreed with
the photon scattering rate measured in a separate test by
detecting spin flips. For data set (3) the TDSE gives a �
0:85 so we obtain �m � 3:0�2� ms�1. This is an average
over a changing ��: the coherence time T2 � 1=2�m �
170�10� �s for this MSS at its maximum excursion.

Numerical simulations showed that the maximum ex-
cursion �max is a function of only � and �0. For �0 > 1 a
third order polynomial fit of the numerical solutions gave
�max ’ �0:07683x3 � 0:4554x2 � 1:135x� 0:011 27�=�,
where x � ��0. Also, the return time is found to be related
to �max through 1� R � 0:82�1� �max=�0�.

We have studied theoretically the forced motion of a
quantum oscillator subject to a moving periodic potential,
and experimentally demonstrated large MSS’s of spin and
motion of a trapped ion. The return time reveals the non-
uniform nature of the force, and the inferred motion is such
that squeezing is confidently expected to be present,
though not directly detected. The coherence time is more
than an order of magnitude longer than previously reported
for this size of mesoscopic superposition, due to the low
heating rate in our comparatively large trap. The coherence
time is limited by photon scattering and motional heating.

These could be reduced by increasing the detuning of the
Raman laser, and increasing the trap size or cooling the
electrodes. The issues studied here are also relevant to
quantum information experiments where forced motion is
used to implement 2-qubit quantum logic gates, and high
precision is essential [12,16,17].
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