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The Letter describes a technique for the spontaneous generation of chirped time-energy entangled
photons. Transmitting either photon through an appropriate dispersive medium results in a temporally
compressed, transform limited biphoton. At maximum bandwidth, the biphoton is a single cycle in length,
with a waveform that has the same characteristic shape as a classical single-cycle pulse.
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When the bandwidth of an optical pulse is equal to, or
greater than, its central frequency and when all of its
spectral components are in phase, the pulse develops a
characteristic waveform that is termed as single cycle
[1,2]. In this Letter, we describe a technique for generating
nonclassical pairs of photons (biphotons) whose character-
istic coincidence time, as measured at distant detectors, is a
single optical cycle. The elements of the technique are
(1) the suggestion for using parametric down conversion
to spontaneously generate pairs of entangled photons
whose instantaneous frequencies are chirped in opposite
directions, and (2) the use of the nonlocal nature of en-
tangled photons [3] to allow the dispersion, as experienced
by one photon, to cancel out the dispersion of the second
photon and to compress the biphoton wave packet.

A key motivation for the study of single-cycle biphotons
is their potential application to nonlinear optical processes
with nonclassical fields [4]. Here we follow Silberberg and
use sum frequency generation as an ultrafast correlator [5].
As shown below, the efficiency for generating sum fre-
quency photons varies inversely with the width of the
incoming biphoton; i.e., single-cycle biphotons behave as
if they have an effective power equal to their energy
divided by their temporal width. Similarly, in the absence
of intermediate resonances, single-cycle biphotons max-
imize the two photon transition probability. Other uses for
ultra-wideband biphotons include nonclassical metrology
[6] and large bandwidth quantum information processing
[7,8].

As shown in Fig. 1, we make use of a quasi-phase-
matched (QPM) periodically poled crystal [9]. The up-
down arrows show the direction of the �az axis of the
domains of the crystal. These domains are reversed with
a period � such that the corresponding spatial frequency,
2�=�, is linearly chirped. The poling period is chosen so
that the signal frequency is phase matched for red emission
at the left end of the crystal and for blue emission at the
right end of the crystal. Paired photons that are emitted
from the right end arrive at their respective photodetectors
at the same time. Paired photons that are emitted from the
left end of the crystal arrive at the photodetector with a
time difference determined by their group velocities. In the

ideal case where there is no group velocity dispersion, the
biphoton wave packet is (exactly) linearly chirped.

Figure 2 shows the near-white light spectrum of a 2 cm
long QPM crystal of LiNbO3 pumped with a monochro-
matic laser at a wavelength of 0:42 �m. Here, the spatial
frequency of the domain reversals varies linearly with
distance and is chosen so that the crystal is phase matched
at a wavelength of 0:750 �m at the left end and at a
wavelength of 0:464 �m at the right end. This corresponds
to a poling period of 3:11 �m at the left end and 7:02 �m
at the right end of the crystal. When compressed, this
spectrum corresponds to a biphoton with a temporal length
that is nearly a single optical cycle at the degenerate
wavelength of 0:84 �m. The refractive index as a function
of frequency, for this and other figures, is ne�!� and is
obtained from the Sellmeier equation for �az polarized light
in LiNbO3 [10].

Before proceeding, we note further pertinent work:
Torner and Teich and colleagues have suggested the use
of a chirped QPM crystal to broaden the bandwidth and to
thereby improve the resolution of optical coherence to-
mography [11]. Shih and colleagues have shown how a
dispersive medium will broaden a biphoton wave packet
and have suggested the use of compensation [12,13]. In a
series of beautiful experiments, Silberberg and his col-
leagues have demonstrated control of the temporal shapes
of down-converted photons and the use of frequency sum-
ming as an ultrafast correlator [5,14,15].

We take the spatial frequency of the QPM crystal as
K0 � �z where K0 is chosen to phase match the crystal at a
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FIG. 1 (color online). Quasi-Phase-Matching. The up-down
arrows show the direction of the �az axis of the domains of the
quasi-phase-matched crystal. The poling period is chosen so that
the signal frequency is phase matched for red emission at the left
end of the crystal and for blue emission at the right end of the
crystal.
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selected frequency at its left end, and � is chosen to phase
match a selected frequency at its right end. The functional
form of the spatially varying nonlinearity is
exp�i

Rz
0 �zdz� � exp�i�z2=2�. We assume a monochro-

matic pump at !p and take the signal and idler frequencies
as !s � ! and !i � !p �!. Both the signal and idler
frequencies are positive, with the signal frequency defined
to be in the range !p=2 � ! � !p.

Time domain signal and idler operators are related to
their frequency domain counterparts by as�t; z� �R
1
�1 as�!; z� exp��i!t�d! and ai�t; z� �

R
1
�1 ai�!i; z��

exp��i�!p �!�t�d!. We introduce operators b�!; z�
that vary slowly with distance, as compared to a wave-
length, by letting a�!; z� � b�!; z� exp�ik�!�z�. The
coupled equations for the operators bs�!s; z� and
byi �!i; z� are
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The quantity �k�!� � kp�!p� � �ks�!� 
 ki�!i� 
 K0�,
where k�!� � !n�!�=c. Dispersion, to all orders, is in-
cluded in Eq. (1), and there is no assumption requiring that
the temporal variation be slow.

We solve Eq. (1) by the same method that one would use
to solve similar classical equations: We assume that the
parametric gain is small and replace the quantities bs�z�
and byi �z� by their values at z � 0, i.e., let bs�z� � bs�0�
and byi �z� � byi �0�. Equation (1) may then be integrated
over the crystal length L. The quantities as�!;L�, and
ayi �!i; L� may be written as
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where A1�!� � exp�iks�!�L�, D1�!� � exp��iki�!i�L�,
C1�!� � B	1�!� exp�i�ks�!� � ki�!i��L�, and
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where erfi is the imaginary error function.
The spectral power density at the signal is S�!� �R
h0jays �!1�as�!2�j0i exp��i�!2 �!1�t�d!2. Noting the

commutator, �aj�!1; 0�; a
y
k �!2; 0�� �

1
2��jk��!1 �!2�,

 S�!� �
1

2�
jB1�!�j2: (4)

The total paired count rate is R �
R!p

!p=2 S�!�d! and is

independent of the chirping parameter � . For the 2 cm
crystal of LiNbO3 pumped by a confocally focused 1 W
laser at 0:42 �m, the integrated count rate for the spectrum
of Fig. 2 is 1:3� 1010 pairs s�1.

From the functional form of B1�!�, we deduce that to
attain bandwidth limited compression of the chirped bi-
photon, we should place an optical element in the path of
the signal beam whose transfer function is

 H�!� � exp
�
i
�
�k�!�2

2�
� q�!�

��
; (5)

where q�!� � �ks�!� 
 ki�!p �!��L. The effect of this
transfer function is to cause the paired signal and idler
photons, irrespective of their frequencies, to arrive at dis-
tant detectors (or at the summing crystal) at the same time.
Though neither the signal or the idler photon is itself
transform limited, the biphoton is.

An example is the case of a signal and idler that are
phase matched at center frequencies !so and !io and have
a bandwidth that is sufficiently small that biphoton com-
pression may be accomplished using quadratic dispersion.
With �! � !�!so, �k��!� is approximated as
�k��!� � �1=Vs � 1=Vi��! � �1=Vr��!, where Vs and
Vi are the signal and idler group velocities at their center
frequencies and Vr is the relative group velocity. The
transfer function of the compensating element becomes
H�!� � exp�i�!2=�2V2

r ��� exp�i�!L=Vr�. For a crystal
of length L, the bandwidth of the chirped source is BW �
�VrL, the group delay is �D � L=Vr, and H�!� �
exp�i��D�!2�=�2BW�� exp�i�!L=Vr�. This is the well-
known function for quadratic compression and delay of a
smooth chirped classical pulse.

We make use of sum frequency generation as an ultrafast
correlator [15]. In Fig. 3(a), signal and idler photons sum to
regenerate monochromatic photons at the pump frequency
!p. Because the signal and idler photons arrive at the
summing crystal simultaneously, the rate of generated
sum frequency photons varies linearly, rather than as the
square, of the rate R of incoming paired photons [4]. By
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FIG. 2 (color online). Calculated spectrum of spontaneously
generated chirped photons for a 2 cm long QPM crystal of
LiNbO3 pumped at 0:42 �m.
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measuring the average power at the sum frequency as a
function of the time delay � between the signal and idler
photons, we measure the envelope of the biphoton wave
function.

To write the expression for the generated sum power, we
replace the coefficients in Eq. (3) with coefficients that
include the dispersion compensating function H�!� in the
signal channel and a time delay function G�!; �� �
exp��i�!p �!��� in the idler channel. These are
A�!� � H�!�A1�!�, B�!� � H�!�B1�!�, C�!; �� �
G�!; ��C1�!�, and D�!; �� � G�!; ��D1�!�.

The rate of generated sum photons is

 Rsum��� � �1

�
R2 


��������
�

1

2�

�Z !p

!p=2
A�!�C	�!; ��d!

��������
2
�
:

(6)

The first term in Eq. (6) is the same as its classical equiva-
lent where the output power depends on the square of the
input power, and the efficiency factor �1 is equal to its
classical value. The second term is equal to the square of
the amplitude of the biphoton wave function. For a wave
function of width Tp, the ratio of the peak height of the
second term to the first is approximately 1=�RTp�.
Equation (6) has the same form as the Glauber intensity
correlation function [16]. In a summing experiment of this
type, but near degeneracy [5], Silberberg and colleagues
report an estimated count rate at the sum frequency of
40 000 counts/s. Here, because the bandwidths will be
much broader, to allow phase matching, the summing
crystal must be very thin, and we anticipate about
100 counts/s.

The technique of the previous paragraph measures the
envelope, or equivalently, the correlation time of the bi-
photon wave packet. To measure the waveform itself, for

example, a frequency chirp, we require a reference phase.
As shown in Fig. 3(b), we obtain this phase by homodyning
the generated sum frequency against the original mono-
chromatic pumping laser, and as before, varying the path
length of the idler beam �. The output current of the bal-
anced homodyne detector is calculated as

 Iout �

�
1

2�

�
<

�Z !p

!p=2
ei�A�!�C	�!�d!

�
: (7)

Here, � is the phase of the local oscillator with respect to
the original pumping beam.

We illustrate the measurement technique by applying it
to a chirped waveform that is generated in an ideal medium
where there is no group velocity dispersion. Figure 4 shows
the waveform (solid line) and its envelope (dashed line) for
a red to blue chirped biphoton with about one octave of
signal bandwidth. Here, in order to make the chirp appar-
ent, we assume a low enough pump frequency that there
are a limited number of cycles beneath the waveform
envelope. Signal and idler photons sum to monochromatic
photons at the pump frequency. As in classical nonlinear
optics, the phase of the generated sum field varies with the
phase of the input fields. Homodyne detection resolves this
phase and allows cycle-by-cycle measurement of the rela-
tive frequency of the signal and idler. A linear chirp, in
correspondence with the chirping parameter � , is obtained.

Figure 5 shows an example of the chirp and compress
technique for LiNbO3 with a small chirp and quadratic
compression. For comparison, Fig. 5(a) shows sum power,
normalized to the classically generated power, for a uni-
formly poled (nonchirped) crystal of length of 2 cm and
relative group velocity Vr. The width of the envelope of the
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FIG. 4 (color online). Chirped biphoton waveform and its
envelope.
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FIG. 3 (color online). (a) Frequency Summing as an ultrafast
correlator. Signal and idler photons sum to produce monochro-
matic photons at frequency !p. The envelope of the biphoton
wave function is obtained by varying the time delay �.
(b) Homodyning the generated sum frequency with the pump
beam and varying the time delay � yield the biphoton wave
function.
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biphoton wave function is L=Vr [17] and is 12.6 ps, and
the linewidth is 2:6 cm�1. For Fig. 5(b), the poling period
is chirped with parameter � � 6:01� 105 to produce a
bandwidth of 122 cm�1 and the function H�!� �
exp�i�!2=�2V2

r ���. The width of the biphoton wave packet
is reduced, and the sum power is increased, both by a factor
of about 30.

Figure 6(a) assumes a very large chirp that produces the
spectrum of Fig. 2. Here, we assume ideal compression
using H�!� of Eq. (5). The pulse is now compressed to a
length of 3.6 fs, or about 1.3 cycles at the degenerate
wavelength of 0:84 �m, and the peak sum frequency
power is increased by a factor of over a thousand.

Figure 6(b) shows the output current obtained by the
homodyne technique of Fig. 3 as a function of the delay

time � in the idler channel. We observe a single-cycle
waveform that is nominally the same as a classical pulse
with one octave of bandwidth. Of interest, the (adjustable)
phase of the local oscillator relative to the pump plays the
role of the carrier-envelope phase of a classical waveform.
As this phase is varied (not shown), one sweeps through the
locus of single-cycle waveforms.
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FIG. 6 (color online). (a) Normalized sum power and
(b) homodyne current for a single-cycle pulse in LiNbO3.
Dispersion is corrected as per Eq. (5).
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FIG. 5 (color online). Calculated normalized sum power as a
function of delay. (a) The QPM crystal is uniformly poled to
phase match at 0:6 �m with a bandwidth of 2:6 cm�1. (b) The
poling period is chirped to produce a bandwidth of 122 cm�1,
and the wave packet is quadratically compressed.
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