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We present a protocol for large-alphabet quantum key distribution (QKD) using energy-time entangled
biphotons. Binned, high-resolution timing measurements are used to generate a large-alphabet key with
over 10 bits of information per photon pair, albeit with large noise. QKD with 5% bit error rate is
demonstrated with 4 bits of information per photon pair, where the security of the quantum channel is
determined by the visibility of Franson interference fringes. The protocol is easily generalizable to even
larger alphabets, and utilizes energy-time entanglement which is robust to transmission over large
distances in fiber.
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Quantum key distribution (QKD) has continued to
progress toward the goal of practical and provably secure
key distribution operating at high bandwidths and over
large distances [1,2]. Achieving high bandwidths over
large distances remains a challenge to researchers, and it
is for this reason that recent studies have focused on the
possibility of increasing the information content of each
transmitted quantum state by using states with higher
dimensionality d [3–8], i.e., qudits instead of qubits.
Higher dimensional quantum states also have the attractive
properties of an increased sensitivity to eavesdropping and
a decreased sensitivity to noise [9,10].

Higher dimensional states for QKD have been investi-
gated previously. Artificial discretization of entangled
transverse position-momentum quantum states with d �
6 [5] and d � 37 [6] has been demonstrated. However,
such spatially encoded states are not well suited to QKD
over large distances owing to the difficulties of preserving
the phase fronts in free space or optic fiber. Hyper-
entangled states of polarization, spatial mode, and energy
time have also been achieved with d � 36 [8]. Lastly, time-
bin entangled states having d � 3 have been implemented
in a QKD scheme operable over large distances.
Unfortunately, time-bin entangled states are not easily
generalized to larger dimensions [7].

In a recent publication [11] some of the authors demon-
strated that time-energy entangled photons can have very
large information content per biphoton. In this Letter we
show experimentally that the continuously entangled time-
energy system can be discretized in order to achieve an al-
phabet of over 1024 characters, i.e., over 10 bits per photon
(albeit with large noise). We demonstrate that a real advan-
tage intransmission rates is obtained by incorporating more
information per photon. For a bit error rate (BER) bound of
5%, an optimum transmission rate in our system is ob-
tained by incorporating 4 bits of information per photon pair.

Consider the unnormalized biphoton state
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where !p is the down-conversion pump frequency and
âyi �ti� is the photon creation operator in mode i at time ti
[12]. After passing through spectral filters, a Gaussian
correlation function A�t1; t2� � e��t1�t2�

2=4�2
provides a

good approximation for the biphoton temporal correlation
function, where the correlation time � is on the order of
�100 fs, as determined by the 10 nm bandwidth of the
spectral filters. The biphoton temporal correlation function
A�t1; t2� can be understood as the correlation between the
time at which the two photons exit the nonlinear crystal.
Also, B�t1; t2� � e��t1�t2�

2=16T2
represents the biphoton en-

velope function, where the biphoton envelope T is given by
the coherence time of the pump photon of frequency !p

that was destroyed in the creation of the entangled bipho-
ton. The biphoton coherence time is on the order of
�500 ns corresponding to the inverse laser linewidth.
For mathematical simplicity it is straightforward to show
that for T � �, A�t1; t2�B�t1; t2� ’ e

��t1�t2�2=4�2
e�t

2
1=4T2

.
The Schmidt number, or number of information eigen-
modes, of Eq. (1) is given by K � T=� [11,13].

Suppose that a party, Alice, sends another party, Bob,
one photon of the entangled state discussed above, and
keeps the other photon under her control. Suppose now that
an eavesdropper, Eve, makes a positive operator value
measurement (POVM) on the arrival time of the photon
sent to Bob [14]. We model Eve’s measurement as a
projective filter function, M̂e �

R
dtf�t; TE�â

y
e �t�j0i�

h0jâe�t�, where f�t; TE� is a general filter function and TE
is related to the resolution of Eve’s POVM. A Gaussian
filter function f�t; TE� � e�t

2=4T2
E gives
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which represents the biphoton wave function after Eve’s
POVM. For TE � T we get � 1

T2 �
1
T2
E
� � 1

T2
E

, which gives us

K � TE=�. This implies that Eve’s POVM results in a
decrease in the Schmidt number; eavesdropping has de-
creased the number of information eigenmodes.
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It has been shown that the Franson interference visibility
[15] can be used as a Bell-type entanglement measure for
energy-time entanglement [16,17]. We find that the
Franson fringe visibility, along with the known path mis-
match, can also be used to measure the biphoton envelope
width T (or TE after Eve’s POVM). If Alice and Bob send
the state in Eq. (2) through a Franson interferometer, the
post-selected coincidence rate is given by

 RM /
Z
dtadtbjh0j�̂�ta; tb; �t;�t�j�Mij

2 (3)

 � 1� cos
�!p

2
�2�t� �t�

�
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2=8�2
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where �̂�ta; tb; �t;�t� � 	â1�ta � �t� �t�â2�tb ��t� �
â1�ta�â2�tb�
, where â1;2�t� is the destruction operator for
Alice’s and Bob’s detectors, respectively, �t is the path
mismatch in Bob’s arm of the Franson interferometer, and
�t is the difference in path mismatches between Alice’s
and Bob’s arms of the Franson interferometer. A strong
drop in Franson fringe visibility is observed when TE &

�t. Therefore, we can detect the presence of Eve’s POVM
by observing a reduction in the visibility of Alice’s and
Bob’s Franson fringes, as predicted by the exponential
function in Eq. (4). Note that a larger path mismatch �t
provides a more sensitive test against Eve’s POVM.

The energy-time entanglement QKD protocol we
present here is accomplished in 6 steps. (1) Alice sends
Bob one photon of an energy-time entangled biphoton and
keeps one for herself. (2) Alice and Bob randomly and
independently measure arrival times of their incoming
photon either directly with low-jitter (FWHM �50 ps,
1=e2 width �350 ps) detectors (timing detector) or after
sending their photon through an unbalanced Michelson

interferometer acting as one-half of a Franson interferome-
ter (see Fig. 1). These timing measurements of Alice and
Bob are accurately synchronized to each other by using a
shared, public synchronization pulse signal. This sync
signal has a period of 64 ns between consecutive pulses
in our experiment, where each pulse is measured, counted,
and recorded. During the entirety of the QKD process
Alice privately scans one arm of her unbalanced interfer-
ometer between two neighboring Franson interference
maximum and minimum locations (predetermined during
initial calibration). (3) After all the photons have been
detected, Bob publicly sends Alice the exact arrival times
of the photons that were detected in the output of his
Michelson interferometer. Alice uses this information,
along with her own Franson timing measurements and
respective interferometer scan locations, to determine the
visibility of the Franson fringes. (4) Using the measured
visibility, Alice determines the security of the system and
communicates the status of security to Bob. If the system is
measured to be secure then Alice and Bob can proceed
with the QKD protocol. (5) Alice and Bob privately bin
their remaining (non-Franson) timing measurements,
where each bin corresponds to a character of the QKD
alphabet (see Fig. 3). Details of the binning procedure are
explained below. For our experiment, the bin size, �, is
varied between 48 ps–30.6 ns, where a trade-off between
alphabet size and BER is explored. The first bin of the
alphabet begins with each sync pulse, and the alphabet
extends over the period of the sync signal (64 ns for our
experiment). (6) Alice and Bob publicly publish the rele-
vant sync periods in which they measure the arrival of non-
Franson photons; however, they keep the precise binning
information from step (5) private. Alice and Bob discard
the non-Franson photon arrival events that do not occur in
the same sync periods, and keep the rest. Alice and Bob are
thus left with identical photon events, where both photons
of a down-conversion pair are measured in the same time
bin by Alice and Bob. The unpublished, precise arrival
times for the accepted photon detection events thus give
Alice and Bob a common key.

An outline of the experiment is shown in Fig. 1. Alice
uses a 50 mW, 390 nm, cw laser having a bandwidth of
2 MHz to pump 5 mm of beta-barium borate (BBO)-I cut
for collinear, degenerate down-conversion (with measured
raw singles rate �800 kHz and coincidence rate �60 kHz
using PerkinElmer single photon counting mode (SPCM)
with single mode fiber). The down-converted photons are
coupled into a single mode, 50:50, fiber beam splitter,
where one photon is sent to Alice and the other to Bob.
The instances where both photons travel to either Alice or
Bob can presently be ignored. Using a variable beam
splitter, Alice and Bob randomly and independently send
their photons either to a high-resolution timing detector
(A1=B1, Micro Photon Devices (MPD) PMD, background
dark-count rate �250 Hz, background light-count rate
�1 kHz, singles rate �20 kHz, coincidence rate �24 Hz,
accidental-to-correlated coincidence ratio of 1:88 for a 1 ns

 

FIG. 1. Experimental setup. BS, FBS, VBS, and PPS, refer to a
50:50 beam splitter, a fiber 50:50 beam splitter, a variable beam
splitter made with a half wave plate and a polarizing beam
splitter, and a passive power splitter, respectively.
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coincidence window) or an unbalanced Michelson inter-
ferometer. The output of the unbalanced Michelson inter-
ferometer is sent to a correlation detector (A2=B2,
PerkinElmer SPCM, dark-count rate �450 Hz, back-
ground light-count rate �600 Hz, singles rate �67 KHz,
coincidence rate �58 Hz). Signals from the detectors
(A1=B1=A2=B2) are routed to two high-resolution data
acquisition devices (DAQ, PicoQuant PicoHarp run at � �
16 ps resolution), one DAQ for A1 and A2, and the other
DAQ for B1 and B2. The two DAQs are synchronized to
each other via a clock signal (with period Tsync � 64 ns)
that is generated by Alice. Alice’s and Bob’s unbalanced
Michelson interferometers both have a path mismatch of
� ’ 10 ns. Alice’s unbalanced Michelson interferometer
has an automated 20 nm resolution translation stage in
the long arm that she scans as part of the key generation
protocol outlined above.

Ideally, for the duration of the QKD process, Alice need
only randomly measure the predetermined maximum and
minimum locations of the Franson fringes. However, due
to phase drifts, for the duration of the experiment Alice’s
stage is scanned from c�� � 0 to c�� � 600 nm � 3

�p
2

in 50 nm steps with 3 s integral periods. After taking data
for a nominal duration of 60 s, Bob sends Alice his Franson
event arrival times. Alice uses Bob’s Franson event arrival
times along with her own Franson event arrival times to
obtain a measured visibility V � 93
 7% [see Fig. 2(a)].
The error in measured visibility is due to phase instabilities
(we require 10 nm stability over 3 m path lengths), which
can be improved with an all-fiber setup. The measured
visibility is used to estimate the resolution of Eve’s
POVM in the intercept-resend-type attack discussed pre-
viously. Assume that Eve performs a POVM on every
photon pair. A theoretical plot of Franson fringe visibility
versus Eve’s POVM resolution is shown in Fig. 2(b). A
Gaussian POVM and a rectangular POVM are analyzed,
where the POVM resolution corresponds to 4 standard
deviations for a Gaussian POVM (corresponding to
99.99% of the distribution) and the FWHM for the rectan-
gular POVM. As seen in Fig. 2(b), a measured Franson
fringe visibility of �93% corresponds to Eve’s POVM

resolution of * 50 ns. As discussed below, the optimal
alphabet obtained in our experiment spans a period of
21 ns. Hence Eve does not gain any detailed information
about the key, demonstrating security of the quantum
channel. A more rigorous security analysis is beyond the
scope of this Letter, and shall be presented in a later
publication. Alice communicates to Bob that the quantum
channel is secure and they proceed with the key sifting
process of the protocol.

Alice and Bob bin the arrival times of their timing
photons. Since the arrival times of each photon is measured
with respect to the clock cycle immediately preceding it,
the first level of binning is accomplished by Alice and Bob
publicly communicating the respective clock cycle, de-
noted na for Alice’s clock cycle and nb for Bob’s, during
which each photon detection event occurs. Coarse-grained
coincidence events are those for which na � nb. The sim-
plest form of binning in order to obtain a D-character
alphabet involves dividing each 64 ns sync period into D,
equally sized bins. Each bin has an equal chance of con-
taining a photon event since a cw pump is used. Using a bin
size of � � 3� � 48 ps gives us an alphabet of D �
64 ns
48 ps� 1278 characters, i.e., over 10 bits per photon. How-
ever, the detector electronics jitter has a 1=e2 width of
350 ps that results in a very high quantum dit error rate
(QDER) of 86%, due to one photon registering in the dth
bin with Alice while the other photon registers in the d

1th bin with Bob. Converting dits to bits, we find that this
corresponds to a BER of�30%. Error correction codes can
be used to reduce the BER, but are only effective for a raw
BER of less than 11% [18].

In order to reduce the raw BER, a process of indexing
and redundancy is performed on the bins. Each of the 1278
bins are consecutively indexed from i � 1 to i � I, with
every I consecutive bins representing the same character
(see Fig. 3). Alice and Bob publicly announce the index i
of their binned photons (but keep the character private).
Alice and Bob keep those coarse-grained correlation
events that also have the same index, and discard the
rest. For example, an index parameter of I � 5 reduces
the alphabet to 1278

5 � 255 characters, but also reduces the
BER to �21%. This process reduces the BER due to the
jitter in the detector electronics; however, a sizeable BER
remains due to erroneous coincidences that are caused by
low collection and detection efficiency, ambient room
light, fluorescence in the optics, and dark counts in the
detectors. 

0 100 200 300 400
0

100

200

300

400
Franson Interference Fr inge

Relative Posit ion (nm)

T
o
ta

l c
o
u
n
ts

a) b)

FIG. 2. (a) Franson fringe visibility is measured to be 93%.
(b) Franson fringe visibility vs Eve’s POVM resolution. The
solid curve represents a Gaussian POVM, while the dashed curve
represents a rectangularform POVM. A measured visibility of
93% corresponds to a POVM resolution of * 50 ns, demonstrat-
ing security (details in text).
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FIG. 3. Example of the binning procedure as outlined in the
text. In this example we have used I � 5, M � 2, and D � 3.

PRL 98, 060503 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 FEBRUARY 2007

060503-3



The BER due to these accidental coincidences can be
further reduced by reducing the coarse-grained coinci-
dence window of 64 ns. This is done by dividing the
sync period (64 ns) into M, separate periods, denoted nma
and nm

0

b for Alice and Bob, respectively. Alice and Bob
publicly announce the sync division, m, during which a
photon is measured, and keep only those coarse-grained
coincidences for which nma � nm

0

b . This reduces the BER
due to accidental coincidences, but also reduces the alpha-
bet size D � 1278 by a factor M. For example, for M � 2,
the alphabet size is reduced to 639 characters (assuming
I � 1). It should be noted that the security of the system,
determined by the Franson fringe visibility, is independent
of the BER.

By varying �, I, and M, it is possible to find an optimal
transmission rate within a desired error bound. As seen in
Fig. 4(a), the optimal transmission rate for our system,
within a BER bound of 5%, corresponds to � � 240 ps
with 4 bits per photon pair (using I � 5 and M � 3, not
shown). Hence, a real advantage is achieved by incorporat-
ing more information per photon pair. Note that this result
was obtained for an estimated eavesdropping POVM reso-
lution of * 50 ns, larger than the 64

3 � 21 ns period of the
optimal alphabet, thus demonstrating security. An added
benefit of this time-energy system is that this optimization
can easily be performed in post-processing, since �

� , I, and
M are all computational (as opposed to physical) parame-
ters. Hence, it is very easy to perform a unique optimiza-
tion for different systems. Further, even if the measured
visibility of the Franson fringes is reduced, e.g., due to the
presence of an eavesdropper, a new optimization can im-
mediately be performed so as to maintain security. For
completeness, an image is encrypted and decrypted using
the key obtained for � � 240 ps, I � 5, and M � 3, as
shown in Fig. 4(b).

We have presented a protocol for large-alphabet QKD
using energy-time entangled photons generated by a cw
pump, as motivated in [11]. In this QKD protocol, one
conjugate basis is used exclusively for key generation
while the other conjugate basis is used exclusively for

measuring security of the quantum channel. It is possible
to maintain secure QKD even in the presence of eaves-
dropping by monitoring the Franson fringe visibility and
reoptimizing �

� , I, and M. We have demonstrated an alpha-
bet of over 10 bits per photon, albeit with a 30% BER.
Within a BER bound of 5%, an optimal transmission rate
was achieved by using 4 bits per photon. Even larger
alphabets can be obtained by using longer sync pulse
intervals or higher resolution timing detectors, while the
BER would need to be significantly reduced by reducing
losses and noise in the system. Energy-time entanglement
has previously been demonstrated to be well preserved
over large distances in fiber [16,17], which makes the
application of this protocol an exciting prospect for prac-
tical QKD.
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FIG. 4 (color online). (a) Diamonds represent optimal bit-rate
vs � (optimized for I and M). Squares represent information per
photon pair for each optimization. Overall optimum bit rate is
obtained for � � 240 ps, with 4 bits per photon pair. (b) Demon-
stration of cryptography using optimal key. Image size 32 KB.
Key reused 58 times.
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