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Long-distance quantum communication via distant pairs of entangled quantum bits (qubits) is the first
step towards secure message transmission and distributed quantum computing. To date, the most
promising proposals require quantum repeaters to mitigate the exponential decrease in communication
rate due to optical fiber losses. However, these are exquisitely sensitive to the lifetimes of their memory
elements. We propose a multiplexing of quantum nodes that should enable the construction of quantum
networks that are largely insensitive to the coherence times of the quantum memory elements.
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Quantum communication, networking, and computa-
tion schemes utilize entanglement as their essential re-
source. This entanglement enables phenomena such as
quantum teleportation and perfectly secure quantum
communication [1]. The generation of entangled states,
and the distance over which we may physically separate
them, determines the range of quantum communication
devices. To overcome the exponential decay in signal
fidelity over the communication length, Briegel et al. [2]
proposed an architecture for noise-tolerant quantum re-
peaters, using an entanglement connection and purifica-
tion scheme to extend the overall entanglement length
using several pairs of quantum memory elements, each
previously entangled over a shorter fundamental seg-
ment length. A promising approach utilizes atomic
ensembles, optical fibers, and single photon detectors
[3–5].

The difficulty in implementing a quantum repeater is
connected to short atomic memory coherence times and
large optical transmission loss rates. In this Letter, we
propose a new entanglement generation and connection
architecture using a real-time reconfiguration of multi-
plexed quantum nodes, which improves communication
rates dramatically for short memory times.

A generic quantum repeater consisting of 2N � 1 dis-
tinct nodes is shown in Fig. 1(a). The first step generates
entanglement between adjacent memory elements in suc-
cessive nodes with probability P0. An entanglement con-
nection process then extends the entanglement lengths
from L0 to 2L0, using either a parallelized [Fig. 1(b)], or
multiplexed [Fig. 1(c)] architecture. This entanglement
connection succeeds with probability P1, followed by sub-
sequent entanglement-length doublings with probabilities
P2; . . . ; PN , until the terminal quantum memory elements,
separated by L � 2NL0, are entangled.

For the simplest case of entanglement-length doubling
with a single memory element per site (N � n � 1), we
calculate the average time to successful entanglement con-
nection for both ideal (infinite) and finite quantum memory
lifetimes. This basic process is fundamental to the more
complexN-level quantum repeaters as an N-level quantum

repeater is the entanglement-length doubling of two
(N � 1)-level systems.

Entanglement-length doubling with ideal memory ele-
ments.—Define a random variable Z as the waiting time for
an entanglement connection attempt (all times are mea-
sured in units of L0=c, where the speed of light c includes
any material refractive index). Let Y � 1 if entanglement
connection succeeds and zero otherwise. Entanglement
generation attempts take one time unit. The time to success
is the sum of the waiting time between connection attempts
and the 1 time unit of classical information transfer during
each connection attempt,
 

T��Z1�1�Y1��Z1�Z2�2��1�Y1�Y2

��Z1�Z2�Z3�3��1�Y1��1�Y2�Y3� . . . ; (1)

As Z, Y are independent random variables, it follows that

 hTi �
hZi � 1

P1
: (2)

In the infinite memory time limit, Z is simply the waiting
time until entanglement is present in both segments, i.e.,
Z � maxfA;Bg, where A and B are random variables rep-
resenting the entanglement generation waiting times in the
left and right segments. As each trial is independent from
prior trials, A and B are geometrically distributed with
success probability P0. The mean of a geometric random
variable with success probability p is 1=p, and the mini-
mum of j identical geometric random variables is itself
geometric with success probability 1� �1� p�j. From
these properties, it follows that

 hTi1 �
3� P2

0

P0P1�2� P0�
: (3)

Entanglement-length doubling with finite memory ele-
ments.—For finite quantum memory elements, Eqs. (1) and
(2) still hold, but Z is no longer simply maxfA;Bg. Rather,
it is the time until both segments are entangled within �
time units of each other, where � is the memory life-
time. For simplicity, we assume entanglement is unaf-
fected for �, and destroyed thereafter. A new random
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variable M � 1 if jA� Bj< �, zero otherwise. Because of
the memoryless nature of the geometric distribution,
 

Z � maxfA1; B1gM1 � �minfA1; B1g � �

�maxfA2; B2g��1�M1�M2 � . . . (4)

From this and Eq. (2), it follows that [6]

 hZi� �
1

P0�2� P0 � 2q��1
0 �
�

2�q��1
0

2� P0 � 2q��1
0

�
2q0�1� q

�
0�1� �P0��

P0�2� P0 � 2q��1
0 �

;

hTi� �
hTi1 � �

1�P0

P0P1
�

q��1
0

1�P0=2

1�
q��1

0

1�P0=2

;

(5)

where q0 � 1� P0. Typically, P0 is small compared to P1

as the former includes transmission losses. The terms in
hZi� are, respectively, the time spent (I) waiting for entan-
glement in either segment starting from unexcited nodes,
(II) fruitlessly attempting entanglement generation until
the quantum memory in the first segment expires, (III) on
successful entanglement generation in the other segment.
When P0 	 1=��� 1�, memory times are much smaller
than the entanglement generation time, and hZi�

1=�P2

0�1�2����2�=�P0�1�2����2�2�1�P0�=�1�2��,
and term (I) dominates the entanglement-length doubling
time. Figure 2 shows the sharp increase in hTi� for small �
characteristic of term (I).

Parallelization and multiplexing.—Long memory co-
herence times remain an outstanding technical challenge,
motivating the exploration of approaches that mitigate the
poor low-memory scaling. One strategy is to engineer a
system that compensates for low success rates by increas-
ing the number of trials, replacing single memory elements
with n > 1 element arrays. In a parallel scheme, the ith
memory element pair in one node interacts only with the
ith pair in other nodes, Fig. 1(b). Thus, a parallel repeater
with n2N�1 memory elements acts as n independent
2N�1-element repeaters and connects entanglement n times
faster. A better approach is to dynamically reconfigure the
connections between nodes, using information about en-
tanglement successes to determine which nodes to connect.
In this multiplexed scheme, the increased number of node
states that allow entanglement connection, compared to
parallelizing, improves the entanglement connection rate
between the terminal nodes.

We now calculate the entanglement connection rate f�
of an N � 1 multiplexed system. Unlike the parallel
scheme, however, the entanglement connection rate is no
longer simply 1=hTi�. When one segment has more en-
tangled pairs than its partner, connection attempts do not
reset the repeater to its vacuum state, and there is residual
entanglement. Simultaneous successes and residual entan-
glement produce average times between successes smaller
than hTi�. We approximate the resulting repeater rates
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FIG. 2 (color online). Plot of hTi� against �. P0 � 0:01, P1 �
0:5. The minimum possible success time of 2 imposes a similar
minimum of the on quantum memory element lifetimes.
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FIG. 1 (color online). (a) Processes of an N � 3 multiplexed
quantum repeater. In addition to two terminal nodes, the network
has seven internal nodes consisting of two quantum memory
sites containing n independent memory elements. Entanglement
generation proceeds with probability P0, creating 8 entangle-
ment lengths of L0. In the lowest panel, shaded memory sites
indicate successfully entangled segments. The N � 1 level en-
tanglement connection proceeds with probability P1, producing
four entangled segments of length 2L0. Nodes reset to their
vacuum states by the connection are blank. The N � 2 and N �
3 levels proceed with probabilities P2 and P3. Each stage results
in entanglement-length doubling, until an N � 3 success entan-
gles the terminal nodes. (b) and (c) show the topology of the n
memory element sets. The parallel architecture (b) connects
entanglement only between memory elements with the same
address. In contrast, multiplexing (c) uses a fast sequential
scanning of all memory element addresses to connect any
available memory elements.
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when residual entanglement is significantly more probable
than simultaneous successes. This is certainly the case in
both the low-memory time limit and whenever nP0 	 1.
Our approximation modifies Eq. (4) by including cases
where the waiting time is zero due to residual entangle-
ment. In Z of Eq. (4), the minfAi; Big terms represent the
waiting time to an entanglement generation success start-
ing from the vacuum state. Multiplexing modifies Eq. (4) in
the following way: for each i � 1; . . .1, we replace
�Ai;Bi�!�minfAi;jg;minfBi;kg�, where j and k � 1; . . . ; n.
The effect of the residual entanglement is approximated by
the factor �: minfAi; Big ! �minfminfAi;jg;minfBi;kgg,
where 1� � is the probability of residual entanglement.
Equation (4) now approximates the average time between
successes. Using Eqs. (2) and (4) and the distributions of
minfAi;jg and minfBi;kg, the resulting rate is

 

hfi�;n�
P1�1�q

n
0��1�q

n
0�2qn���1�

0 �

1�2qn0�q
2n
0 �4qn���1�

0 �2qn���2�
0 ��

;

��
qn�1

0 �1�qn0��1�q
2n�1
0 �2q3n�2

0 �1�q��2n�1
0 ��

�1�q2n�1
0 ��1�qn0�2q���1�n

0 �
:

(6)

When n � 1, � � 1, as required. Further, as nP0, � be-
come large, �! 0 showing the expected breakdown of the
approximation. As n! 1, � should approach 1=2.

Figure 3(a) demonstrates that, as expected, multiplexed
connection rates exceed those of parallelized repeaters.
The improvement from multiplexing in the infinite mem-
ory case is comparatively modest. However, the multi-
plexed connection rates are dramatically less sensitive to
decreasing memory lifetimes. Note that the performance of
multiplexing n � 5 exceeds that parallelizing n � 10, re-
flecting a fundamental difference in their dynamics and
scaling behavior. Figure 3(b) further illustrates the memory
insensitivity of multiplexed repeaters by displaying the
fractional rate f�=f1. As parallelized rates scale by the
factor n, such repeaters all follow the same curve for any n.
By contrast, multiplexed repeaters become less sensitive to
coherence times as n increases. This improved perform-
ance in the low-memory limit is a characteristic feature of
the multiplexed architecture.
N-level quantum repeaters.—For N > 1 repeaters, we

proceed by direct computer simulation, requiring a specific
choice of entanglement connection probabilities. We
choose the implementation proposed by Duan, Lukin,
Cirac, and Zoller (DLCZ) [3]. The DLCZ protocol requires
a total distance L, the number of segments 2N , the loss � of
the fiber connection channels, and the efficiency � of
retrieving and detecting an excitation created in the quan-
tum memory elements.

Let P0 � �0 exp���L0=2�, where �0 is related to the
fidelity F 
 2N�1� �0� [3]. Recursion relations give
the connection probabilities: Pi � ��=�ci�1 � 1���
f1� �=�2��ci�1 � 1��g, ci � 2ci�1 � 1� �=�, i �

1; . . .N. Neglecting detector dark counts, c0 � 0. For pho-
ton number resolving detectors, � � 1 (PNRDs) [3]. � �
2 for nonphoton resolving detectors (NPRDs). For values
of �< 1, photon losses result in a vacuum component of
the connected state in either case. For NPRDs, the indis-
tinguishability of one- and two-photon pulses requires a
final projective measurement, which succeeds with proba-
bility � � 1=�c3 � 1� (see Ref. [3] for a detailed
discussion).

Consider a 1000 km communication link. Assume a
fiber loss of 10�= ln10 � 0:16 dB=km, �0 � 0:01, and
� � 0:9. Taking N � 3 (L0 � 125 km) gives P0 �
0:001. For concreteness, we treat the NPRD case, produc-
ing connection probabilities: P1 � 0:698, P2 � 0:496,
P3 � 0:311, and � � 0:206. Figure 3 demonstrates agree-
ment with the exact predictions for n � 1 and the approxi-
mate predictions for n > 1. The slight discrepancies for
long memory times with larger n are uniform and under-
stood from the simultaneous connection successes ne-
glected in Eq. (6).

An N-level quantum repeater succeeds in entanglement
distribution when it entangles the terminal nodes with each
other. Figure 4 shows the entanglement distribution rate of
a 1000 km N � 3 quantum repeater as a function of the
quantum memory lifetime. Remarkably, for multiplexing
with n * 10, the rate is essentially constant for coherence
times over 100 ms, while for the parallel systems, it de-
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FIG. 3 (color online). Comparison of entanglement connection
rate f� for parallel (dashed line) and multiplexed (solid line)
architectures as a function of coherence time. P0 � 0:01, P1 �
0:1. (a) Solid circles denote simulated values for the multiplexed
case. (b) Parallel repeaters of any n value follow the n � 1 line.
As n increases, multiplexed scaling improves while parallel
scaling remains constant.
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creases by 2 orders of magnitude. For memory coherence
times of less than 250 ms, one achieves higher entangle-
ment distribution rates by multiplexing ten memory ele-
ment pairs per segment than parallelizing 1000. In the
extreme limit of minimally-sufficient memory coherence
times set by the light-travel time between nodes, each step
must succeed the first time. The probabilities of entangle-
ment distribution scale as nP2N

0 (parallelized) and �nP0�
2N

(multiplexed), for nP0 	 1.
Communication and cryptography rates.—The DLCZ

protocol requires two separate entanglement distributions
and two local measurements to communicate a single
quantum bit. The entanglement coincidence requirement
and finite efficiency qubit measurements result in commu-
nication rates less than f�. Error correction or purification
protocols, via linear-optics-based techniques, will further
reduce the rate and may require somewhat lower values of
�0 than the one used in Fig. 4, to maintain sufficiently high
fidelity of the final entangled qubit pair [3,7]. We empha-
size that it is the greatly enhanced entanglement distribu-
tion rates with multiplexing that make implementation of
such techniques feasible.

Multiplexing with atomic ensembles.—A multiplexed
quantum repeater could be implemented using cold atomic
ensembles as the quantum memory elements, subdividing
the atomic gas into n independent, individually addressable
memory elements, Fig. 1(c). Dynamic addressing can be
achieved by fast (submicrosecond), two-dimensional scan-
ning using acousto-optic modulators, coupling each mem-
ory element to the same single-mode optical fiber.
Consider a cold atomic sample 400 �m in cross-section
in a far-detuned optical lattice. If the addressing beams
have waists of 20 �m, a multiplexing of n > 100 is fea-
sible. To date, the longest single photon storage time is
30 �s, limited by Zeeman energy shifts of the unpolarized,
unconfined atomic ensemble in the residual magnetic field

[8]. Using magnetically-insensitive atomic clock transi-
tions in an optically confined sample, it should be possible
to extend the storage time to tens of milliseconds, which
should be sufficient for multiplexed quantum communica-
tion over 1000 km.

Summary.—Multiplexing offers only marginal advan-
tage over parallel operation in the long memory time limit.
In the opposite, minimal memory limit, multiplexing is
n2N�1 times faster, yet the rates are practically useless.
Crucially, in the intermediate memory time regime, multi-
plexing produces useful rates when parallelization cannot.
As a consequence, multiplexing translates each incremen-
tal advance in storage times into significant extensions in
the range of quantum communication devices. The im-
proved scaling outperforms massive parallelization with
ideal detectors, independent of the entanglement genera-
tion and connection protocol used. Ion-, atom-, and quan-
tum dot-based systems should all benefit from
multiplexing.
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