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The ground-state phase diagram of a two-dimensional Bose system with dipole-dipole interactions is
studied by means of a quantum Monte Carlo technique. Our calculation predicts a quantum phase
transition from a gas to a solid phase when the density increases. In the gas phase, the condensate fraction
is calculated as a function of the density. Using the Feynman approximation, the collective excitation
branch is studied and the appearance of a roton minimum is observed. The results of the static structure
factor at both sides of the gas-solid phase are also presented. The Lindemann ratio at the transition point
becomes � � 0:230�6�. The condensate fraction in the gas phase is estimated as a function of the density.
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The chromium atom has an exceptionally large perma-
nent dipole moment, and the recent realization of Bose-
Einstein condensation of 52Cr [1] has stimulated great
interest in the properties of dipolar systems at low tem-
peratures. It was observed [2] that dipolar forces lead to
anisotropic deformation during expansion of the conden-
sate. In the experiments [1,2], the dipolar forces were
competing with short-range scattering. The latter, in prin-
ciple, can be removed by tuning the s-wave scattering
length to zero by Feshbach resonance [3]. This would
lead to an essentially pure system of dipoles. On the other
hand, low-dimensional systems can be realized by making
the confinement in one (or two) directions so tight that no
excitations of the levels of the tight confinement are pos-
sible and the system is dynamically two- (or one-)
dimensional.

A major development has also been done in recent years
towards the realization of excitons at temperatures close to
the Bose-Einstein condensation temperature [4]. An exci-
ton is much more stable if the electron is spatially sepa-
rated from the hole (spatially separated excitons). Such an
exciton can be modeled as a dipole. If the excitons are in
two coupled quantum wells, they can be treated effectively
as two-dimensional if the size of an exciton is small
compared to the mean distance between excitons.

One might expect to find a phase transition from a gas
phase to a crystal one at large density. As the condensate
fraction is small at the transition point, perturbative theo-
ries, such as the Gross-Pitaevskii [5] or Bogoliubov [6,7]
approaches, will fail to describe accurately this transition.
One has to use ab initio numerical methods to address this
quantum many-body problem. Recently, a trapped system
of two-dimensional dipoles has been studied by the path
integral Monte Carlo method [8], and the mesoscopic
analog of crystallization has been found. Trapped dipoles
with s-wave scattering were investigated [9]. So far, there
have been no full quantum microscopic computations of
the properties of a homogeneous system of dipoles.

The Hamiltonian of a homogeneous system of N bo-
sonic dipoles has the form

 Ĥ � �
@

2

2M

XN
i�1

�i �
Cdd

4�

X
j<k

1

jrj�rkj
3 ; (1)

where M is the dipole mass and ri, i � 1; N, are the
positions of dipoles. The expression for the coupling con-
stant Cdd depends on the nature of the dipole-dipole inter-
action. Two possible physical realizations of a two-
dimensional system of dipoles can be considered:
(i) Cold atoms with permanent dipole moments m aligned
perpendicularly to the plane of confinement by an external
magnetic field. In this case, Cdd � �0m2, where �0 is the
permeability of free space. Alternatively, the electric di-
pole moment can be induced by an electric field E; then the
coupling constant is Cdd � E2�2=�0, where � is the static
polarizability and �0 is the permittivity of free space.
(ii) Spatially indirect excitons. In two coupled quantum
wells, one containing only holes and the other only elec-
trons, holes and electrons might couple, forming indirect
excitons. Another possible realization is a single quantum
well where the exciton dipole moment is induced by a
normal electric field. Spatial separation between the hole
and the electron suppresses recombination and greatly
increases the lifetime of an exciton. If the separation
between excitons is greater than the electron-hole separa-
tion D, indirect excitons can be approximated as bosons
with the dipolar moment oriented perpendicularly to the
plane. In this case, Cdd � e2D2=", where e is an electron’s
charge and " is the dielectric constant of the semiconduc-
tor. Study of 2D indirect exciton systems, in fact, is a hot
topic, and this problem has been addressed both theoreti-
cally [10] and experimentally [4].

The Hamiltonian (1) can be written in dimensionless
form by expressing all distances in units of characteristic
length r0 � MCdd=�4�@2� and energies in units of E0 �
@

2=Mr2
0. Properties of a homogeneous system are governed
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by the dimensionless parameter nr2
0 (dimensionless den-

sity), with n being density of the system.
In this Letter, we present a complete study of the phase

diagram of two-dimensional bosonic particles with dipole-
dipole interactions at zero temperature. We resort to the
diffusion Monte Carlo (DMC) method [11] in order to
find the ground-state energy and correlation functions
of the many-body Hamiltonian (1). Within the DMC
method, the Schrödinger equation is solved in imaginary
time for the product of the ground-state wave function
and a trial (or guiding) wave function, which we chose
to be of the Bijl-Jastrow form: �T�r1; . . . ; rN� �QN
i�1 f1�ri�

QN
j<k f2�jrj � rkj�. In the gas phase, the den-

sity profile is constant and f1�r� � const. When two par-
ticles closely approach, the influence of other particles can
be neglected, and we expect that f2�r� is well approxi-
mated by the solution of the two-body scattering problem.
We choose the short distance part of the two-body corre-
lation term as f2�r� � C1K0�2=

���
r
p
�, where K0�r� is a

modified Bessel function of the second kind and C1 is
some constant. At large distances, instead, the contribution
from other particles must not be neglected, and collective
behavior (phonons) is expected. From hydrodynamic the-
ory, it was shown [12] that in a two-dimensional system the
phononic long-range part of the wave function decays as
f2�r� / exp��const=r�. We use this functional dependence
in a symmetrized form f2�r� � C2 exp��C3=r��
exp��C3=�L� r��, which ensures that f02�L=2� � 0. We
match the short- and long-range parts of f2�r� and demand
continuity of the function and its first derivative at a
matching distance Rmatch. This, together with the condition
f2�L=2� � 1, fixes constants C1, C2, and C3. In the solid
phase, we use the same f2�r� and add the one-body
Gaussian localization term f1�ri� � exp����ri � rcr

i �
2�,

i � 1; N, where � is the localization strength and rcr
i is

the position of the lattice site. Variational parameters Rmatch

and � are chosen by minimizing the variational energy.
We model the homogeneous system at density n by

considering N particles in a simulation box with periodic
boundary conditions. The size of the box Lx � Ly is
chosen in such a way that n � N=�LxLy�. In the gas phase,
a square box Lx � Ly is considered, while in the solid
phase we ensure that each of the box sides is a multiple of
an elementary cell size in a triangular lattice.

The advantage of the DMC method is that it gives
essentially exact energy within some statistical uncertain-
ties. In a system of dipoles, special attention should be paid
to an appropriate extrapolation to the infinite system. The
reason for that is that, while the 1=r3 dipole-dipole inter-
action is not yet a long-range one in a two-dimensional
system [13], the long-range decay is already quite slow.
The finite-size effects in energy can be significantly re-
duced by adding the tail energy

 

Etail�n; L�
N

�
1

2

Z 1
L=2

V�r�g2�r�2�rdr (2)

to the output of the DMC calculation with L �
minfLx; Lyg. Here V�r� is the interaction potential and
g2�r� is the pair distribution function. An approximate
value of the integral (2) Etail=N � Cddn

3=2=�2
����
N
p
� is ob-

tained by substituting g2�r� by its average value in the bulk
g2�r� � n. This greatly suppresses finite-size dependence
(for the example shown in the inset in Fig. 1, by a factor of
25), while the residual dependence is eliminated by a
fitting procedure. We note that the dependence on the
number of particles in this case scales as 1=

����
N
p

, contrary
to the law 1=N, usual for fast decaying potentials. We do
the extrapolation of the energy E�N� � EDMC � Etail to the
thermodynamic limit value Eth using as fitting formula:
E�N� � Eth � C=N

1=2, where C is a fitting constant. In the
inset in Fig. 1, we show an example of the finite-size study
for the energy. In it, we consider a density nr2

0 � 256 and a
solid phase, where we expect to find the largest finite-size
dependence, due to the oscillatory behavior of the pair
distribution function. We find that our fitting function
describes well the finite-size dependence, and we use it
for the extrapolation to the thermodynamic limit. The same
procedure is repeated for densities nr2

0 � 32, 48, 64, 96,
128, 196, 256, 384, 512, 768, and 1024 and for the gas and
solid phases.

In Fig. 1, we show the results of the ground-state energy
for gas and solid phases. We find that at small density the
gas phase is energetically favorable and the solid phase is
metastable. At larger densities, the system crystallizes and
a triangular lattice is formed. We fit our data points with a
dependence E=N � a1�nr

2
0�

3=2 � a2�nr
2
0�

5=4 � a3�nr
2
0�

1=2,
where the powers 3=2 and 5=4 describe the proper asymp-

 

FIG. 1 (color online). Energy per particle of the dipole system
as a function of the dimensionless density nr2

0: (blue) solid
squares, gas phase; (red) open circles, solid phase. Energy is
measured in units �@2=�Mr2

0��=�nr
2
0�

3=2. Inset: An example of the
finite-size dependence for the energy in the solid phase at
dimensionless density nr2

0 � 256; symbols, DMC energy [with
added tail energy, Eq. (2)]; solid line, fit Eth � C=

����
N
p

; dashed
line, extrapolation of the energy to infinite system size Eth.
Energy in the inset is measured in units of @2=�Mr2

0�.
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totic behavior of potential and kinetic energies, respec-
tively, and the power 1=2 is added for a better accuracy
of the fit. The best parameters of the fit are a1 � 4:536�8�,
a2 � 4:38�4�, and a3 � 1:2�3� for the gas phase and a1 �
4:43�1�, a2 � 4:80�3�, and a3 � 2:5�2� for the solid. The
transition is estimated to happen at the critical density
nr2

0 � 290�30�. We note that in a one-dimensional system
the role of interactions is enhanced and the transition
happens at much smaller densities nr0 	 0:4 [14].
Maxwell double tangent construction shows that the region
of phase coexistence is very small, and freezing and melt-
ing points are indistinguishable within the error bars of our
calculation. At large densities, quantum fluctuations get
suppressed, and the energy is dominated by the potential
energy of particle-particle interactions. The energy even-
tually approaches the limit of a classical crystal. The
triangular lattice in this limit has potential energy
Etriang=N � 4:446�nr0�

3=2.
Knowledge of the equation of state E�n�=N of a homo-

geneous system permits the calculation of the chemical
potential ��n� � @E=@N and the speed of sound c:Mc2 �
n@�=@n. This information is extremely useful for the
description of trapped systems with a large number of
particles. As is well known, the local density approxima-
tion can be used for predictions of the density profile,
release energy, frequencies of collective modes, etc., which
can be accessed in experiments [15].

We estimate the thermodynamic Lindemann ratio � �����������������������
h�r� rc�2i

p
=aL (aL is the lattice length), at the transition

density as � � 0:230�6�. Comparing to other two-
dimensional systems, we find that this value is smaller
than the one of a hard disk � � 0:279, while it is similar
to more long-ranged potentials, such as � � 0:235�15� for
Yukawa bosons and � � 0:24�1� for Coulomb bosons [16].
In a three-dimensional system, the value of � at the tran-
sition is generally larger; for example, � � 0:28 for the
Yukawa potential [17].

The breaking of translational symmetry takes place in
the crystal. Periodic modulation appears in the density
profile n�r� and the pair correlation function g2�r� r0� �
hn�r�n�r0�i. We have studied the static structure factor Sk
which is related to g2�r� by Fourier transformation Sk �
1� 2�

R
1
0 �g2�r� � n�J0�kr�rdr. We use a technique of

pure estimators which essentially removes any bias from
a particular choice of the guiding wave function [18]. The
static structure factor increases from zero at k � 0 to unity
for large momentum. In the gas phase, Sk increases
smoothly and has a peak around inverse interparticle dis-
tance n1=2 (see Fig. 2). As the dimensionless density nr2

0 is
increased, the correlations get stronger and the height of
the peak is increased. In the solid phase, the static structure
factor is discontinuous and has a �-function peak at inverse
lattice site length a�1

L � �
���
3
p
n=2�1=2 � 0:93 . . . n1=2.

We can get some insight on the excitation spectrum Ek
by relating it to the static structure factor through the
Feynman relation

 Ek �
@

2k2

2MSk
: (3)

This relation is expected to be exact for small momenta
(i.e., in the phononic regime), while at larger momenta it
gives an upper bound to the excitation spectrum [19].
Predictions for Ek obtained from DMC data are presented
in Fig. 3. We find that deviations from low-momenta
phononic linear behavior appear very soon. The excitation
spectrum is monotonous for the smallest considered den-
sity. As the density increases, the roton minimum at a finite
value of the momentum is observed (see also Ref. [7]). The
roton gap � decreases as the density is increased. We
expect that our approach gives the correct position of the
roton minimum, while the real value of the roton gap � is

 

FIG. 2 (color online). Static structure factor: left axis, gas
phase at densities nr2

0 � 16, 32, 64, 128, and 256 (the higher
the peak, the larger the density); right axis, solid phase at density
nr2

0 � 256.

 

FIG. 3 (color online). Upper bound for the excitation spectrum
in the gas phase. Solid lines, Feynman formula—Eq. (3)—
applied to the DMC data for the static structure factor; dashed
line, free particle limit. Energy is measured in units of @2=�Mr2

0�.
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overestimated, as happens in DMC calculations for gas
helium [20].

While Bose-Einstein condensation is expected to hap-
pen in dilute systems, strong interactions between particles
destroys coherence. In order to study the process of deco-
herence quantitatively, we measure the condensate density
n0. In a homogeneous system, it can be found from the
long-range asymptotic jr� r0j ! 1 of the one-body den-
sity matrix (OBDM) g1�r� r

0� � h�̂y�r��̂�r0�i, where
�̂�r� is the field operator. As g1�r� is a nonlocal quantity,
the DMC output gives for it a mixed estimator, which is
biased by the choice of the guiding function. This bias can
be significantly diminished by the extrapolation procedure
[18]. We have measured asymptotics of OBDM for differ-
ent sizes of the system and made extrapolation to the
thermodynamic limit. In Fig. 4, we plot the condensate
fraction as a function of the dimensionless density in the
gas phase. We find that the condensate depletion is large in
the range of considered densities. This prohibits the use of
the perturbative Bogoliubov approach for prediction of the
condensate depletion and justifies the necessity of a nu-
merical approach to the problem. The condensate fraction
is rather small at the transition density.

In conclusion, we have investigated the zero-
temperature quantum phase diagram of a two-dimensional
dipole system and estimated the critical density of the gas
to solid phase transition. We studied structural properties
by observation of the pair distribution function, static
structure factor, and Lindemann ratio. Coherence proper-
ties are investigated by looking at the one-body density
matrix. The condensate fraction decreases rapidly with the
density and is estimated to be very small (2%) at the
transition point. Our predictions can be checked in future
experiments with spatially separated indirect excitons and
cold dipolar Bose gases in reduced geometry.

After completion of this work, we became aware of
Ref. [21], in which systems of N � 36; 90 dipoles are
studied by the finite-temperature path integral MC method
with a result for nc compatible with our prediction.
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